קטגוריה: כיתה י – 804 – 4 יחידות – טריגונומטריה

* לסידור השיעורים לפי סדר עולה לחץ על כותרת
סידור: כותרת | תאריך | פופולריות | | תגובות | אקראי Sort Ascending
הצג לפי:

כיתה י 804 – טריגונומטריה – שיעור 01 א – פירמידה ישרה

1.18K צפיות3 תגובות

נשתמש במשפטים: כל זוויות הריבוע שוות כ''א ל-90 מעלות. אלכסוני הריבוע חוצים זה את זה ומאונכים זה לזה. הגובה במשולש ש''ש הוא גם חוצה זווית הראש וגם תיכון לבסיס.

כיתה י 804 – טריגונומטריה – שיעור 01 ב – המשך פירמידה ישרה

401 צפיות0 תגובות

נמצא את הזווית על ידי חישוב קוסינוס הזווית.

כיתה י 804 – טריגונומטריה – שיעור 02 – נוסחת שטח משולש

1.18K צפיות0 תגובות

נוכיח את דמיון המשולשים בעזרת המשפטים הבאים: זוויות מתחלפות שוות בין ישרים מקבילים וישר חותך אותם. זווית היקפית וזווית בין משיק ומיתר הנשענות על אותה קשת, שוות.

כיתה י 804 – טריגונומטריה – שיעור 03 א – משפט הסינוסים

1.93K צפיות9 תגובות

נשתמש במשפט הסינוסים: היחס בין אורך צלע במשולש לבין סינוס הזווית שמולה, שווה לקוטר המעגל החוסם את המשולש.

כיתה י 804 – טריגונומטריה – שיעור 03 ב – המשך משפט הסינוסים

680 צפיות0 תגובות

נשתמש בנוסחת שטח משולש כאשר נתונים לנו 2 צלעות והזווית הכלואה ביניהן.

כיתה י 804 – טריגונומטריה – שיעור 04 – משולש חסום במעגל

1.08K צפיות0 תגובות

לצורך פתרון השאלה נשתמש במשפט: משולש שבו הגובה לבסיס הוא גם חוצה זווית הראש, הוא משולש שווה שוקיים. משפט הסינוסים: היחס בין אורך צלע במשולש לבין סינוס הזווית שמולה, שווה לקוטר המעגל החוסם את המשולש.

כיתה י 804 – טריגונומטריה – שיעור 05 א – משפט הקוסינוסים

1.47K צפיות0 תגובות

כאשר נתונים לנו אורכי צלעות במשולש והזווית בין 2 הצלעות ורוצים למצוא את אורך הצלע שנמצאת מול הזווית, משתמשים במשפט הקוסינוסים.

כיתה י 804 – טריגונומטריה – שיעור 05 ב – המשך משפט הקוסינוסים

353 צפיות0 תגובות

נשתמש במשפטים הבאים: משפט הקוסינוסים, סכום זוויות חד צדדיות בין מקבילים, שווה 180 מעלות. בסיסי הטרפז מקבילים זה לזה. כל אחת מזוויות המלבן שווה 180 מעלות.

כיתה י 804 – טריגונומטריה – שיעור 05 ג – המשך משפט הקוסינוסים

284 צפיות0 תגובות

נשתמש במשפטים הבאים: משפט פיתגורס - במשולש ישר זווית ACD, סכום ריבועי הניצבים שווה לריבוע היתר. במלבן, כל זוג צלעות נגדיות שווה. משפט הקוסינוסים במשולש CBF

כיתה י 804 – טריגונומטריה – שיעור 06 א – שטח משולש

390 צפיות0 תגובות

נשתמש במשפט: גובה לבסיס במשולש שווה שוקיים הוא גם חוצה זווית הראש. גובה לצלע מאונך לה.

כיתה י 804 – טריגונומטריה – שיעור 06 ב – המשך שטח משולש

241 צפיות0 תגובות

נשתמש במשפט הסינוסים: היחס בין אורך צלע במשולש, לבין סינוס הזווית שמולה, הוא גודל קבוע ושווה לקוטר המעגל החוסם את המשולש. כמו כן, גובה לבסיס במשולש שווה שוקיים הוא גם חוצה זווית הראש.

כיתה י 804 – טריגונומטריה – שיעור 06 ג – המשך שטח משולש

276 צפיות1 תגובות

נשתמש במשפטים הבאים: זווית מרכזית שווה לכפליים הזווית ההיקפית, הנשענת על אותה הקשת. סכום זוויות במשולש שווה ל- 180 מעלות. למציאת שטח המשולש נשתמש בזהות הטריגונומטרית: שטח המשולש שווה למחצית מכפלת 2 צלעותיו וסינוס הזווית הכלואה ביניהן.

כיתה י 804 – שיעור 07 א – משפט הקוסינוסים

511 צפיות0 תגובות

נשתמש במשפטים הבאים: התיכון לצלע במשולש, מחלק אותה ל-2 חלקים שווים. במשולש ש''ש זוויות הבסיס שוות. סכום זוויות המשולש הוא 180 מעלות.

כיתה י 804 – שיעור 07 ב – המשך משפט הקוסינוסים

311 צפיות0 תגובות

נשתמש במשפט הקוסינוסים במשולש ACT לצורך פתרון השאלה.

כיתה י 804 – שיעור 07 ג – המשך משפט הקוסינוסים

254 צפיות0 תגובות

נשתמש במשפט הסינוסים במשולש ABT נמצא את הזווית BAT נחסיר אותה מזווית BAD ונמצא את הזווית TAD.

כיתה י 804 – שיעור 08 – משפט הסינוסים והקוסינוסים

1.58K צפיות1 תגובות

נשתמש במשפטים הבאים: סכום זוויות צמודות הוא 180 מעלות. סכום זוויות במשולש הוא 180 מעלות. משפט הסינוסים במשולש ABE משפט הקוסינוסים במשולש ABC