קטגוריה: כיתה י – 4 יחידות שיעורים
כיתה י – שיעור 06 – מבחן תשע"ב – גיאומטריה אנליטית – משולש 1
2.36K צפיות1 תגובות0 אוהב
נמצא את נקודת האמצע של קטע שקצותיו נתונות, לפי נוסחה. נבדוק האם נקודה נתונה נמצאת על הישר שהוא תיכון לצלע במשולש. נמצא את משוואת התיכון לצלע המשולש בדרך הבאה: נמצא את שיפוע הישר, ונציב אותו במשוואה הכללית של ישר.
כיתה י 804 – שיעור 01 – פירוק לגורמים
3.90K צפיות1 תגובות3 אוהב
נפתור תרגילים בנושא פרוק לגורמים. נכנס את האיברים הדומים, ונשתמש בכללי העלאה בחזקה.
כיתה י 804 – שיעור 02 – הוצאת גורם משותף
1.95K צפיות0 תגובות0 אוהב
נפתור תרגילים עם אפשרות להוציא גורם משותף שהינו ביטוי אלגברי,
כיתה י 804 – שיעור 03 א – נוסחת הכפל המקוצר
1.54K צפיות1 תגובות6 אוהב
נפרק לגורמים ונוציא גורמים משותפים ונכנס איברים דומים; ונשתמש בנוסחת הכפל המקוצר על מנת לפתור את התרגילים.
כיתה י 804 – שיעור 03 ב – המשך נוסחת הכפל המקוצר
810 צפיות2 תגובות1 אוהב
נפתור תרגילים בנושא: פרוק לגורמים עם שימוש בנוסחת הכפל המקוצר.
כיתה י 804 – שיעור 04 – נוסחת הכפל המקוצר
697 צפיות0 תגובות1 אוהב
תרגיל שבו מתבקש התלמיד לפתוח סוגריים לפי נוסחת הכפל המקוצר ותרגיל נוסף שבו עליו להשלים את החסר בהפרש דו איבר בריבוע עם שימוש בנוסחת הכפל המקוצר
כיתה י 804 – שיעור 05 א – פירוק הטרינום הריבועי
1.11K צפיות3 תגובות0 אוהב
נלמד מהו טרינום ריבועי וכיצד לפתור אותו.
כיתה י 804 – שיעור 05 ב – המשך פירוק הטרינום הריבועי
573 צפיות0 תגובות0 אוהב
נפתור תרגילים נוספים בעזרת פירוק הטרינום הריבועי.
כיתה י 804 – שיעור 06 א – משוואה עם פירוק הטרינום
748 צפיות0 תגובות1 אוהב
נפתור את המשוואה הנתונה עם שיטת פירוק הטרינום הריבועי.
כיתה י 804 – שיעור 06 ג – משוואה עם נוסחת השורשים
818 צפיות0 תגובות0 אוהב
נפתור משוואות עם שימוש בנוסחת השורשים
כיתה י 804 – שיעור 07 – משוואה דו-ריבועית
4.32K צפיות0 תגובות1 אוהב
נפתור משוואה דו-ריבועית על ידי הבאת המשוואה הנתונה למשוואה ריבועית, בעזרת הצבה.
כיתה י 804 – שיעור 08 – השורש הריבועי
497 צפיות1 תגובות0 אוהב
נפתור את התרגילים בעזרת נוסחאות הכפל המקוצר.
כיתה י 804 – שיעור 09 – שורש ריבועי במכנה
1.31K צפיות3 תגובות0 אוהב
נשתמש בנוסחת הכפל המקוצר לצורך פתרון התרגיל. כמו כן נלמד, שכאשר יש לנו שורש במכנה, אנו מכפילים את המונה ואת המכנה בשורש שנמצא במכנה.
כיתה י 804 – שיעור 10 – משוואות אי-רציונליות
5.14K צפיות0 תגובות0 אוהב
לצורך פתרון התרגילים: נעלה בריבוע את 2 אגפי המשוואה, ונפתור את המשוואה שקיבלנו. נציב במשוואה המקורית את התוצאות שקיבלנו, ונבדוק אם כל אחד מהם מתאים להיות פתרון המשוואה. הערה: כאשר מעלים את 2 האגפים בריבוע, נוספים פתרונות זרים למשוואה ולכן כדאי לבדוק את הפתרונות שקיבלנו.
כיתה י 804 – שיעור 11 – המשך משוואות אי-רציונליות
1.01K צפיות3 תגובות2 אוהב
לצורך פתרון התרגילים: נעלה בריבוע את 2 אגפי המשוואה, ונפתור את המשוואה שקיבלנו. נציב במשוואה המקורית את התוצאות שקיבלנו, ונבדוק אם כל אחד מהם מתאים להיות פתרון המשוואה. הערה: כאשר מעלים את 2 האגפים בריבוע, נוספים פתרונות זרים למשוואה ולכן כדאי לבדוק את הפתרונות שקיבלנו.
כיתה י 804 – שיעור 12 א – אי שיוויונות ממעלה ראשונה
699 צפיות0 תגובות0 אוהב
כאשר נתון אי שיוויון בצורת שבר, נבדוק את תחום ההצבה של המכנה. אם אי- השיוויון גדול מאפס, כלומר הפונקציה חיובית: נבדוק 2 אפשרויות: מונה מינוס חלקי מכנה מינוס נקבל פלוס, מונה פלוס חלקי מכנה פלוס, נקבל פלוס.
כיתה י 804 – שיעור 13 – המשך אי-שיוויונות
408 צפיות1 תגובות0 אוהב
כאשר יש לנו שבר כלשהו בתרגיל, ואי השיוויון גדול מאפס, נחשב את המונה והמכנה כפרמטרים חיוביים או שליליים.
כיתה י 804 – שיעור 14 – אי-שיוויונות עם שברים
645 צפיות0 תגובות1 אוהב
נפתור את התרגיל עם שמירת הכללים: כאשר שבר גדול מאפס, יש לחשב את 2 האפשרויות: המונה והמכנה חיוביים, או שליליים.
כיתה י 804 – שיעור 15 – מערכת של אי-שיוויונות
366 צפיות0 תגובות1 אוהב
נפתור מערכת "וגם" של אי שיוויונים. במערכת "וגם" הנקראת גם חיתוך, אנו מחפשים את התחום המשותף – את האזורים המשותפים - (בו זמנית) לשני אי השוויונות השייכים למערכת.
כיתה י 804 – שיעור 16 – מערכת של אי-שיוויונות ממעלה ראשונה
1.15K צפיות0 תגובות0 אוהב
במערכת "או" הנקראת גם איחוד, אנו מחפשים את התחום הכולל – את כל האזורים - (לפחות אחד) לשני האי-שוויונות השייכים למערכת. במערכת "וגם" הנקראת גם חיתוך, אנו מחפשים את התחום המשותף – את האזורים המשותפים - (בו זמנית) לשני אי השוויונות השייכים למערכת.
כיתה י 804 – שיעור 17 – אי-שיוויונות ממעלה שנייה
610 צפיות0 תגובות0 אוהב
נפתור את אי השיוויון של הפונקציה בעזרת נוסחת השורשים, ונשרטט סקיצה של הפרבולה, למשוואה יש 2פתרונות ממשיים, כאשר דלתה גדולה מאפס. כלומר גרף הפונקציה חותך את ציר X בשתי נקודות.
כיתה י 804 – שיעור 18 – המשך אי שיוויונות ממעלה שנייה
337 צפיות0 תגובות0 אוהב
נפתור את המשוואה הנתונה, בעזרת נוסחת השורשים. למשוואה יש פתרון יחיד, כאשר a לא שווה לאפס וגם כאשר דלתה=0 כלומר גרף הפרבולה משיק לציר X בנקודה זו. למשוואה אין פתרונות, כאשר a לא שווה לאפס וגם דלתה קטנה מאפס. כלומר גרף הפונקציה אינו חותך את ציר X.
כיתה י 804 – שיעור 19 – מערכת אי שיוויונות ממעלה שנייה
405 צפיות3 תגובות0 אוהב
במערכת "וגם" הנקראת גם חיתוך, אנו מחפשים את תחום המשותף (בו זמנית) לשני אי השוויונות השייכים למערכת.
כיתה י 804 – שיעור 20 – אי-שיוויונות ממעלה שנייה
392 צפיות1 תגובות1 אוהב
תרגיל המורכב ממערכת "או" בין 2 מערכות ו"גם"
כיתה י 804 – שיעור 21 – מערכת אי-שיוויונות – פרבולה מעל הישר
544 צפיות0 תגובות1 אוהב
נמצא את נקודות החיתוך של הפרבולה עם הישר, על ידי כך שניצור אי שיוויון בין 2 המשוואות באופן כזה: שמשוואת הפרבולה תהיה יותר גדולה ממשוואת הישר.
כיתה י 804 – שיעור 22 – פרבולה מתחת לישר
680 צפיות0 תגובות2 אוהב
יש למצוא את ערכי X אשר עבורם גרף הפונקציה נמצא מתחת לישר. כלומר, נפתור אי-שיוויון שבו משוואת הפרבולה קטנה ממשוואת הישר.
כיתה י 804 – שיעור 23 א – חקירת משוואה לינארית עם נעלם
596 צפיות2 תגובות0 אוהב
למשוואה פתרון יחיד כאשר המקדם של X לא שווה לאפס.