קטגוריה: כיתה יב – 803 – 3 יחידות – חשבון דיפרנציאלי ואינטגרלי

* לסידור השיעורים לפי סדר עולה לחץ על כותרת
סידור: כותרת | תאריך | פופולריות | | תגובות | אקראי Sort Descending
הצג לפי:
עמוד 1 מתוך 212

כיתה יב 803 – שיעור 01 ד – חדו"א – משיק לגרף

328 צפיות0 תגובות

נמצא את משוואת המשיק לגרף הפונקציה

כיתה יב 803 – שיעור 01 א2 – הקשר ביו גרף הפונקציה לגרף הנגזרת 2

243 צפיות0 תגובות

כאשר הנגזרת מתאפסת, (נקודת חיתוך גרף הנגזרת עם ציר X) יש לפונקציה נקודות קיצון . בתחום עליית הפונקציה הנגזרת חיובית. בתחום ירידת הפונקציה הנזרת שלילית.

כיתה יב 803 – שיעור 01 א1 – הקשר ביו גרף הפונקציה לגרף הנגזרת 1

317 צפיות0 תגובות

כאשר הנגזרת מתאפסת, (נקודת חיתוך הישר עם ציר X) יש לפונקציה נקודת קיצון . בתחום עליית הפונקציה הנגזרת חיובית. בתחום ירידת הפונקציה הנגזרת שלילית.

כיתה יב 803 – שיעור 01 א – בני – מבוא לנגזרות

265 צפיות0 תגובות

מבוא לנגזרות - נלמד מה זו נגזרת של פונקציה ואיך מחשבים נגזרת

כיתה יב 803 – שיעור 18 ד – מבחן תשע"ב – המשך אינטגרל – שטח ומשיק

296 צפיות0 תגובות

לצורך פתרון השאלה, מנקודת ההשקה נוריד אנך לציר X . S3 - השטח שבין הישר המשיק לפונקציה ובין ציר X . נבנה טבלה שבה נרשום: את הפונקציה העליונה, את התחום שבו נחשב את השטח, ואת הפונקציה התחתונה. נחשב את פעולת האינטגרל בתחום שמצאנו.

כיתה יב 803 – שיעור 18 ג – מבחן תשע"ב – אינטגרל שטח ומשיק

800 צפיות0 תגובות

נמצא את נקודת ההשקה בנקודה נתונה, על ידי הצבתה בפונקציה הנתונה. נמצא את נגזרת הפונקציה = שיפוע המשיק; בעזרת הנוסחה הכללית של פונקציה לפי שיעורים נתונים של נקודה. נמצא את שיעורי נקודת החיתוך של המשיק עם ציר X.

כיתה יב 803 – שיעור 17 ג – מבחן תשע"ב – אינטגרל של פונקציה

698 צפיות0 תגובות

נגזור את הפונקציה הנתונה. שיפוע המשיק = נגזרת הפונקציה. בעזרת שיפוע המשיק ונקודת ההשקה, נמצא את הפרמטר. למציאת נקודות קיצון של הפונקציה, נשווה את נגזרת הפונקציה לאפס. את סוג נקודת הקיצון, נמצא על ידי הנגזרת השנייה: אם הנגזרת השנייה חיובית, אזי יש נקודת מינימום. לצורך מציאת הפונקציה, נפעיל את פעולת האינטגרל, על פונקציית הנגזרת, ונציב בה את שיעורי נקודת ההשקה.

כיתה יב 803 – שיעור 12 ב – מבחן תשע"ב – סכום מינימלי

196 צפיות0 תגובות

נסמן את שיעורי הנקודה C באמצעות הפמטר X; נגזור את הפונקציה הנתונה ונמצא את שיעורי נקודות הקיצון; בעזרת פעולת הנגזרת השנייה של הפונקציה המקורית, נמצא את סימן נקודת הקיצון - מינימום.

כיתה יב 803 – שיעור 05 ה – מבחן תשע"ב – המשך חקירת פונקציה רציונלית

150 צפיות0 תגובות

נבדוק איזה גרף מתאים לפונקציה המקורית: גרף 1 נפסל - אין לו נקודות חיתוך עם ציר X; גרף 2 נפסל - יש לו נקודות קיצון הפוכות ממה שיש לפונקציה המקורית; גרף 3 נמצא מתאים - הפונקציה עולה ויורדת בתחומים שמצאנו; ונקודות הקיצון מתאימות; גרף 4 נפסל - אין לפונקציה נקודות חיתוך עם ציר Y.

כיתה יב 803 – שיעור 05 ד – מבחן תשע"ב – המשך חקירת פונקציה רציונלית

268 צפיות0 תגובות

מצאנו את נקודות הקיצון של הפונקציה, נבנה טבלה כדי למצוא את סוג נקודות הקיצון. ואת תחומי העלייה והירידה של הפונקציה.

כיתה יב 803 – שיעור 05 ג – מבחן תשע"ב – חקירת פונקציה רציונלית

1.38K צפיות0 תגובות

נמצא את תחום ההגדרה: כאשר X לא שווה לאפס, כיון שאם X=0 זה מאפס את המכנה. נמצא את חיתוך הפונקציה עם הצירים.

כיתה יב 803 – שיעור 19 ב – המשך שטח בין 2 גרפים

192 צפיות1 תגובות

נחשב את השטח בין 2 הגרפים על ידי: בניית טבלה ובה: נתוני הפונקציה העליונה, תחום נקודות החיתוך של 2 הפונקציות, נתוני הפונקציה התחתונה. פעולת האינטגרל על הפרש הפונקציות בתחום הנ''ל, יעזור לנו למצוא את מבוקשנו.

כיתה יב 803 – שיעור 19 א – שטח בין 2 גרפים

169 צפיות0 תגובות

למדנו שנגזרת הפונקציה שווה לשיפוע המשיק. נגזור את הפונקציה ונשווה אותה לשיפוע המשיק, ונקבל את נקודות ההשקה. נמצא את משוואת המשיק , על ידי הצבת נקודת ההשקה ושיפוע המשיק , במשוואה הכללית של קו ישר.

כיתה יב 803 – שיעור 18 ב – המשך שטח בין ישר ופרבולה

193 צפיות0 תגובות

נמשיך לפתור את חלק ג של השאלה הקודמת: נחשב את שטח המלבןABCO = S1+S2 נחשב את S2 על ידי : בניית טבלה ובה נציב את הנתונים הבאים: הפונקציה העליונה, תחום השטח, הפונקציה התחתונה. פעולת האינטגרל על הפרש הפונקציות בתחום השטח.

כיתה יב 803 – שיעור 18 א – שטח בין ישר ופרבולה

224 צפיות0 תגובות

נמצא את משוואת הישר המבוקש על ידי הבנה שהשטח הכללי הוא מלבן. נמצא את נקודת החיתוך של הישר והפרבולה.

כיתה יב 803 – שיעור 17 ב – המשך שטח בין הגרף והצירים

232 צפיות0 תגובות

נמצא את נקודות חיתוך הפונקציה עם הצירים. נבנה טבלה ובה נרשום: את הפונקציה העליונה, את התחום שבו אנו מחשבים את השטח הדרוש, את הפונקציה התחתונה. למציאת השטח המבוקש, נבצע את פעולת האינטגרל של הפרש הפונקציות בתחום שמצאנו.

כיתה יב 803 – שיעור 17 א – שטח בין הגרף והצירים

269 צפיות1 תגובות

כדי למצוא את נקודות הקיצון של הפונקציה, נגזור אותה ונשווה את התוצאה לאפס,

כיתה יב 803 – שיעור 16 – שטח מעל ומתחת לציר X

417 צפיות2 תגובות

נתונה נגזרת הפונקציה ונקודה עליה. כדי למצוא את הפונקציה, נשתמש בפעולת האינטגרל, שהיא פעולה הפוכה לפעולת הנגזרת. את השטח המוגבל על ידי גרף הפונקציה נמצא על ידי: מציאת נקודות החיתוך עם ציר X נבנה טבלה שבה נציב את : נתוני הפונקציה העליונה, תחום הפונקציה ואת הפונקציה התחתונה. נפחית את האינטגרל של הפונקציה התחתונה מהעליונה, בתחום נקודות החיתוך עם ציר X שמצאנו.

כיתה יב 803 – שיעור 15 – נפח תיבה מקסימלי

189 צפיות1 תגובות

נבנה את פונקציית נפח התיבה בעזרת הנתונים. נמצא את נקודת הקיצון של הפונקציה: על ידי השוואת הנגזרת שלה לאפס, ואת סימן נקודת הקיצון: על ידי הצבת שיעור X של נקודת הקיצון שמצאנו, בנגזרת השנייה של הפונקציה.

כיתה יב 803 – שיעור 14 – מרחק מינימלי בין פונקציות

564 צפיות0 תגובות

הפונקציה הראשונה היא ממעלה ראשונה ולכן היא מתאימה לקו ישר. שיפוע הקו - המקדם של X חיובי וזה מתאים לישר עולה. נרשום את שיעורי הנקודה A שנמצאת על הישר בעזרת X ו- Y נמצא את אורך הקטע AB : על ידי השוואת הנגזרת של הפונקציה לאפס; בעזרת הצבת שיעורי X של נקודות הקיצון בנגזרת השנייה, נגלה שיש לנו נקודות מינימום.

כיתה יב 803 – שיעור 13 – ערך מינימלי של סכום

293 צפיות4 תגובות

נמצא מתוך הנתונים, את הסכום X+Y נביא אותו למינימום: על ידי גזירת הפונקציה; נבנה טבלה ונמצא את נקודת המינימום. נמצא את הסכום המינימלי.

כיתה יב 803 – שיעור 12 – סכום מינימלי של ריבועי אלכסונים

179 צפיות0 תגובות

נשתמש במשפט פיתגורס: סכום ריבועי הניצבים שווה לריבוע היתר. נבנה את הפונקציה של סכום ריבועי האלכסונים; נמצא את נקודת הקיצון: על ידי שימוש בנגזרת של הפונקציה; נמצא את סימן הנקודה: על ידי שימוש בנגזרת השנייה של הפונקציה.

כיתה יב 803 – שיעור 11 – שטח מקסימלי

1.10K צפיות0 תגובות

נבנה פונקציה של שטח המשולש הנתון; נמצא את נקודת הקיצון: על ידי כך שנגזור את הפונקציה ונשווה אותה לאפס. נמצא שהנקודה שמצאנו מקסימלית: על ידי הנגזרת השנייה של הפונקציה בנקודת הקיצון. נחשב את שטח המשולש הנתון.

כיתה יב 803 – שיעור 10 – תחום הגדרת פונקציה עם שורשים

320 צפיות0 תגובות

לפי נתוני השאלה, נמצא את שיעורי נקודת הקיצון: על ידי פעולת הגזירה של הפונקציה, והשוואת הנגזרת לאפס. כאשר הנגזרת היא בצורת שבר, והביטוי במכנה של הנגזרת חיובי, ניתן לגזור רק את המונה של הנגזרת. כדי לקבוע את סוג הקיצון: נמצא את הנגזרת השנייה של המונה,, אם נמצא שהיא קטנה מאפס, נקבל נקודת מקסימום. לשרטוט סקיצה של הפונקציה: נבנה טבלה ובה נקודות שנמצאות על הפונקציה.

כיתה יב 803 – שיעור 09 ב – המשך חקירת פונקציה עם שורשים

279 צפיות0 תגובות

נחקור את הגרפים הנתונים על סמך התוצאות שקיבלנו בסעיפים קודמים: נרשום מדוע גרף מסויים מתאים לפונקציה וגרף אחר אינו מתאים לה.

כיתה יב 803 – שיעור 09 א – חקירת פונקציה עם שורשים

1.13K צפיות2 תגובות

תחום ההגדרה: הביטוי בתוך השורש הריבועי חייב להיות חיובי. נמצא את נקודות החיתוך עם ציר X על ידי הצבת Y=0 נמצא את נקודות החיתוך עם ציר Y על ידי הצבת X=0 לצורך מציאת נקודות החשודות כנקודות קיצון של הפונקציה: נגזור אותה ונשווה אותה לאפס. ובעזרת טבלה נמצא האם הנקודה היא נקודת מקסימום: על ידי הצבת שיעורה בנגזרת הפונקציה, או על ידי הנגזרת השנייה שלה: אם ערך הנגזרת השנייה קטנה מאפס, נקבל נקודת מקסימום.

כיתה יב 803 – שיעור 08 – משוואת המשיק לפונקציה רציונלית

511 צפיות0 תגובות

נמצא את ערך הפרמטר A : על ידי גזירת הפונקציה והצבת נקודת המינימום בנגזרת. נשווה את הנגזרת של הפונקציה לשיפוע המשיק, ונמצא את נקודת ההשקה; נציב את שיעורי נקודת ההשקה בנוסחת המשוואה הכללית, ונקבל את משוואת המשיק. נמצא את המרחק של הנקודה B מראשית הצירים: על ידי הצבת X=0 במשוואת המשיק.

כיתה יב 803 – שיעור 07 ב – המשך גרף של פונקציה רציונלית

176 צפיות0 תגובות

בהתאם למיקום נקודת המינימום, המקסימום ונקודת אי - ההגדרה, נמצא באיזה תחום הפונקציה עולה או יורדת. נמצא איזה גרף מתאים לפונקציה, בהתאם לתוצאות שיעורי נקודות הקיצון שקיבלנו וסוגן.

עמוד 1 מתוך 212