קטגוריה: כיתה יב – 3 יחידות שיעורים

* לסידור השיעורים לפי סדר עולה לחץ על כותרת
סידור: כותרת | תאריך | פופולריות | | תגובות | אקראי Sort Descending
הצג לפי:
עמוד 1 מתוך 3123

כיתה יב 803 – שיעור 04 ב – המשך תחום ההגדרה של פונקציה רציונלית

428 צפיות0 תגובות

נבדוק אם הגרפים הנתונים מתאימים לתוצאות שקיבלנו. נמצא את תחומי העלייה של הפונקציה: ככל שערכו של X עולה, ערך הפונקציה Y עולה. נמצא את תחומי הירידה של הפונקציה: ככל שערכו של X עולה, ערך הפונקציה Y יורד. נבנה טבלה עם נקודת הקיצון ונקודת אי-הגדרה. בכל תחום של X נציב נציג, את הנציג נציב בנגזרת הפונקציה, כאשר הנגזרת גדולה מאפס, הנגזרת חיובית והפונקציה עולה. כאשר הנגזרת קטנה מאפס, הנגזרת שלילית והפונקציה יורדת.

כיתה יב 803 – שיעור 18 ב – המשך שטח בין ישר ופרבולה

241 צפיות0 תגובות

נמשיך לפתור את חלק ג של השאלה הקודמת: נחשב את שטח המלבןABCO = S1+S2 נחשב את S2 על ידי : בניית טבלה ובה נציב את הנתונים הבאים: הפונקציה העליונה, תחום השטח, הפונקציה התחתונה. פעולת האינטגרל על הפרש הפונקציות בתחום השטח.

כיתה יב 803 – שיעור 06 ו – מבחן תשע"ב – גאומטריה אנליטית – מעגל

679 צפיות0 תגובות

נמצא את שטח המשולש המבוקש : בסיס המשולש מונח על ציר X גובה המשולש נמצא על ציר Y נשתמש בנוסחת שטח המשולש: בסיס*גובה/2

כיתה יב 803 – שיעור 11 – שטח מקסימלי

1.90K צפיות0 תגובות

נבנה פונקציה של שטח המשולש הנתון; נמצא את נקודת הקיצון: על ידי כך שנגזור את הפונקציה ונשווה אותה לאפס. נמצא שהנקודה שמצאנו מקסימלית: על ידי הנגזרת השנייה של הפונקציה בנקודת הקיצון. נחשב את שטח המשולש הנתון.

כיתה יב 803 – שיעור 04 – גאומטריה אנליטית – המשך מלבן ואלכסון

830 צפיות0 תגובות

נמשיך בפתרון השאלה על ידי : השוואת משוואות האלכסון וצלע המלבן וכך נמצא את שיעורי קודקוד המלבן. נמצא את שטח המלבן על ידי שימוש בנוסחת המרחק לשתי צלעות סמוכות.

כיתה יב 803 – שיעור 01 – הנדסה אנליטית – מעוין

4.60K צפיות0 תגובות

נפתור את השאלה ממבחן בגרות שאלון 803 ונשתמש במשפט: אלכסוני המעוין מאונכים זה לזה, חוצים זה את זה וחוצים את זוויותיו.

כיתה יב 803 – שיעור 03 א – תחומי עלייה וירידה של פונקציית פולינום

899 צפיות0 תגובות

נגזור את הפונקציה ; נציב את שיעורי נקודת הקיצון שנתונה בנגזרת הפונקציה שהיא משוואת המשיק, נמצא את תחומי העלייה והירידה בעזרת טבלה;

כיתה יב 803 – שיעור 01 ג – המשך נקודות קיצון של פונקציית פולינום

1.14K צפיות0 תגובות

נמצא את נקודת החיתוך של הפונקציה עם ציר x על ידי הצבת Y שווה לאפס בפונקציה; נמצא את נקודת החיתוך של הפונקציה עם ציר Y על ידי הצבת X שווה לאפס בפונקציה; בנקודות הקיצון המשיק מקביל לציר X.

כיתה יב 803 – שיעור 18 ד – מבחן תשע"ב – המשך אינטגרל – שטח ומשיק

366 צפיות0 תגובות

לצורך פתרון השאלה, מנקודת ההשקה נוריד אנך לציר X . S3 - השטח שבין הישר המשיק לפונקציה ובין ציר X . נבנה טבלה שבה נרשום: את הפונקציה העליונה, את התחום שבו נחשב את השטח, ואת הפונקציה התחתונה. נחשב את פעולת האינטגרל בתחום שמצאנו.

כיתה יב 803 – שיעור 08 ב – בני – תרגיל משולש

260 צפיות0 תגובות

פתרון תרגיל עם משולש. חלק ב - נמצא את היקף המשולש, ואת משוואת המעגל שבסיס המשולש הוא קוטרו

כיתה יב 803 – שיעור 04 א – תחום ההגדרה של פונקציה רציונלית

1.10K צפיות1 תגובות

הגדרת פונקציה רציונלית - מנה של 2 פולינומים. תחום ההגדרה של פונקציה - אוסף ערכי X שעבורם יש לפונקציה משמעות. את שיעורי נקודת הקיצון נמצא בעזרת השוואת הנגזרת לאפס. בעזרת הצבת הערכים הקיצוניים שמצאנו בגזירה הראשונה, בנגזרת השנייה של הפונקציה, נמצא את סוג נקודת הקיצון: אם התקבל ערך חיובי, יש לפונקציה נקודת מינימום, אם התקבל ערך שלילי, יש לפונקציה נקודת מקסימום,

כיתה יב 803 – שיעור 19 א – שטח בין 2 גרפים

224 צפיות0 תגובות

למדנו שנגזרת הפונקציה שווה לשיפוע המשיק. נגזור את הפונקציה ונשווה אותה לשיפוע המשיק, ונקבל את נקודות ההשקה. נמצא את משוואת המשיק , על ידי הצבת נקודת ההשקה ושיפוע המשיק , במשוואה הכללית של קו ישר.

כיתה יב 803 – שיעור 13 – ערך מינימלי של סכום

583 צפיות4 תגובות

נמצא מתוך הנתונים, את הסכום X+Y נביא אותו למינימום: על ידי גזירת הפונקציה; נבנה טבלה ונמצא את נקודת המינימום. נמצא את הסכום המינימלי.

כיתה יב 803 – שיעור 02 א – גרף של פונקציית פולינום

939 צפיות0 תגובות

נמצא את שיעורי נקודות חיתוך הפונקציה עם צירX כשנשווה את Y לאפס; נמצא את שיעורי נקודות חיתוך הפונקציה עם ציר Y כשנשווה את X לאפס; נמצא את נקודות הקיצון כשנחשב את הנגזרת של הפונקציה ונשווה אותה לאפס; נמצא את סוג נקודות הקיצון על ידי בניית טבלה.

כיתה יב 803 – שיעור 15 – נפח תיבה מקסימלי

291 צפיות1 תגובות

נבנה את פונקציית נפח התיבה בעזרת הנתונים. נמצא את נקודת הקיצון של הפונקציה: על ידי השוואת הנגזרת שלה לאפס, ואת סימן נקודת הקיצון: על ידי הצבת שיעור X של נקודת הקיצון שמצאנו, בנגזרת השנייה של הפונקציה.

כיתה יב 803 – שיעור 12 ב – מבחן תשע"ב – סכום מינימלי

243 צפיות0 תגובות

נסמן את שיעורי הנקודה C באמצעות הפמטר X; נגזור את הפונקציה הנתונה ונמצא את שיעורי נקודות הקיצון; בעזרת פעולת הנגזרת השנייה של הפונקציה המקורית, נמצא את סימן נקודת הקיצון - מינימום.

כיתה יב 803 – שיעור 02 ג – מבחן תשע"ב – גאומטריה אנליטית – המשך מעוין

405 צפיות0 תגובות

סעיף ג של השאלה: כדי למצוא את שיעורי הנקודה D, הנמצאת על ציר X נציב Y=0 במשוואת האלכסון BD, נשתמש במשפט: אלכסוני המעוין חוצים זה את זה. וכן בנוסחת המרחק בין 2 נקודות. נמצא את שטח המעוין : על ידי הצבת שיעורי הנקודות המתאימות בנוסחת המרחק בין 2 נקודות.

כיתה יב 803 – שיעור 16 – שטח מעל ומתחת לציר X

518 צפיות2 תגובות

נתונה נגזרת הפונקציה ונקודה עליה. כדי למצוא את הפונקציה, נשתמש בפעולת האינטגרל, שהיא פעולה הפוכה לפעולת הנגזרת. את השטח המוגבל על ידי גרף הפונקציה נמצא על ידי: מציאת נקודות החיתוך עם ציר X נבנה טבלה שבה נציב את : נתוני הפונקציה העליונה, תחום הפונקציה ואת הפונקציה התחתונה. נפחית את האינטגרל של הפונקציה התחתונה מהעליונה, בתחום נקודות החיתוך עם ציר X שמצאנו.

כיתה יב 803 – שיעור 02 – אחוזים – הוזלות והתייקרויות

2.95K צפיות12 תגובות

לפתרון התרגיל בנושא התייקרויות והוזלות, נבנה טבלה שתעזור לנו ובה נרשום חולצה וחצאית בשורות ובעמודות נרשום: כמות מכל פריט, מחיר מקורי, מחיר לאחר התייקרות ו/או הוזלה, סה''כ מחיר.

כיתה יב 803 – שיעור 05 ד – מבחן תשע"ב – המשך חקירת פונקציה רציונלית

321 צפיות0 תגובות

מצאנו את נקודות הקיצון של הפונקציה, נבנה טבלה כדי למצוא את סוג נקודות הקיצון. ואת תחומי העלייה והירידה של הפונקציה.

כיתה יב 803 – שיעור 03 ב – המשך תחומי עלייה וירידה של פונקציית פולינום

506 צפיות0 תגובות

נמצא את נקודת חיתוך הפונקציה עם ציר X כשנשווה את Y לאפס; נמצא את נקודת חיתוך הפונקציה עם ציר Y כשנשווה את X לאפס; נצייר סקיצה של גרף הפונקציה ונמצא את התחומים שבו הפונקציה חיובית ושלילית.

כיתה יב 803 – שיעור 03 – גאומטריה אנליטית – מלבן ואלכסון

1.68K צפיות0 תגובות

לפתרון השאלה נשתמש במשפט: צלעות סמוכות במלבן מאונכות זו לזו. כל זוויותיו של המלבן ישרות. נמצא את שיפוע צלע המלבן על ידי שימוש בנוסחת השיפוע של ישר. נמצא את משוואת הצלע הסמוכה לנ''ל על ידי שימוש במשוואה הכללית של הישר.

כיתה יב 803 – שיעור 03 – שאלה מילולית – צלעות ושטח מלבן וריבוע

706 צפיות0 תגובות

נחשב את אורך המלבן לאחר ההקטנה שמהווה 80% מאורכו המקורי. כמו כן נחשב את רוחב המלבן לאחר ההגדלה שמהווה 125% מרוחבו המקורי. נמצא את שטח הריבוע ששוה לריבוע צלעו.

כיתה יב 803 – שיעור 05 – מבחן תשע"ב – רווח והפסד

1.06K צפיות1 תגובות

נפתור שאלה מילולית עם הסבר על מהו רווח ומהו הפסד, על ידי בניית טבלה שתבהיר לנו את הפתרון. רווח = מחיר קנייה - מחיר מכירה.

כיתה יב 803 – שיעור 18 ג – מבחן תשע"ב – אינטגרל שטח ומשיק

953 צפיות0 תגובות

נמצא את נקודת ההשקה בנקודה נתונה, על ידי הצבתה בפונקציה הנתונה. נמצא את נגזרת הפונקציה = שיפוע המשיק; בעזרת הנוסחה הכללית של פונקציה לפי שיעורים נתונים של נקודה. נמצא את שיעורי נקודת החיתוך של המשיק עם ציר X.

כיתה יב 803 – שיעור 01 – שאלת תנועה – רוכב אופניים

3.32K צפיות4 תגובות

לפתרון השאלה המילולית בנושא תנועה, נבנה טבלה ובה נחשב את זמן הגעת הרוכב לנקודת המפגש בשעות, את מהירות הרוכב בקמ''ש, את המרחק עד לנקודת המפגש והמרחק של כל הדרך, בק''מ. נשתמש בנוסחה: דרך = מהירות * זמן

כיתה יב 803 – שיעור 01 א – בני – מבוא לנגזרות

346 צפיות0 תגובות

מבוא לנגזרות - נלמד מה זו נגזרת של פונקציה ואיך מחשבים נגזרת

כיתה יב 803 – שיעור 07 ב – המשך גרף של פונקציה רציונלית

242 צפיות0 תגובות

בהתאם למיקום נקודת המינימום, המקסימום ונקודת אי - ההגדרה, נמצא באיזה תחום הפונקציה עולה או יורדת. נמצא איזה גרף מתאים לפונקציה, בהתאם לתוצאות שיעורי נקודות הקיצון שקיבלנו וסוגן.

עמוד 1 מתוך 3123