קטגוריה: כיתה יא

* לסידור השיעורים לפי סדר עולה לחץ על כותרת
סידור: כותרת | תאריך | פופולריות | | תגובות | אקראי Sort Descending
הצג לפי:
עמוד 1 מתוך 912345...לסוף »

כיתה יא 802 – שיעור 15 – סדרה הנדסית – הסבר

2.41K צפיות0 תגובות

סדרה הנדסית – סדרה שבה כל איבר הוא מכפלה של האיבר הקודם במספר קבוע הנקרא מנת הסדרה. a1 – ערך האיבר הראשון בסדרה. n – מיקום האיבר בסדרה. an - האיבר הכללי בסדרה. d – מנת הסדרה. התנאי לקיום סדרה הנדסית: כל איבר אמצעי בסדרה הנדסית שאיבריה חיוביים, הוא ממוצע הנדסי של 2 איברים הסמוכים לו. a , b, c הם שלושה איברים סמוכים של סדרה הנדסית; b/a = c/b

כיתה יא 804 – בני – שיעור 05 – קיץ תשעב – שאלה מילולית – עלות מינימלית

325 צפיות0 תגובות

פתרון שאלה 9 מבגרות קיץ תשע"ב - פתרון בעייה מילולית של אופטימיזציה. מציאת מינימום של מחיר נסיעה

כיתה יא 802 – שיעור 05 – חזקות עם מעריך טבעי

461 צפיות0 תגובות

נפתור תרגילים בהם נתונים שברים כאשר במונה ובמכנה יש מספרים שהועלו בחזקה .

כיתה יא 802 – שיעור 02 – הנדסת המרחב – מנסרות שונות

359 צפיות0 תגובות

נציג ונסביר צורות ותכונות של מנסרות שונות וביניהן: תיבה וקוביה

כיתה יא 802 – שיעור 12 – הנדסת המרחב – זווית בין מקצוע הפירמידה לבסיסה

327 צפיות0 תגובות

נראה כיצד מחשבים את הזווית בין מקצוע הפירמידה לבסיסה. מקודקוד הפירמידה נוריד גובה - אנך לבסיסה, נעביר את אלכסון הבסיס העובר דרך עקב הגובה ומאונך אליו. הזווית שנוצרת בין אלכסון הבסיס ובין מקצוע הפירמידה, היא הזווית המבוקשת. נתונים לנו: אלכסון הבסיס, הגובה של הפירמידה, ומקצועה. בעזרת נוסחת קוסינוס הזווית המבוקשת, נחשב את הזווית - קוסינוס של זווית שווה לצלע שליד הזווית חלקי היתר.

כיתה יא 802 – שיעור 01 ב – בגרות קיץ תשע"ג – קודקוד הפרבולה

344 צפיות0 תגובות

נשתמש בייצוג ההזזות של הפרבולה שבעזרתה ניתן למצוא את קודקוד הפרבולה.

כיתה יא 804 – בגרות חורף תשע"ג – בני – שיעור 07ב – חקר הפונקציה 2

290 צפיות0 תגובות

פתרון בגרות חורף תשע"ג. שאלה 7 - חקר הפונקציה חלק ב' - סרטוט גרף הפונקציה ומציאת משיק

כיתה יא 804 – שיעור 06ב – בני – פונקציות טריגונומטריות 2

185 צפיות0 תגובות

הגדרה מורחבת של פונקציות טריגונומטריות - חלק ב' - תיאור גרפי עבור זוויות כלשהן

כיתה יא 802 – שיעור 36 א – ממוצע והסתברות – פועלים ושכר

598 צפיות1 תגובות

נפתור שאלה ממבחן בגרות ונשתמש במונחים הבאים: טבלת שכיחות - בטבלה זו יהיו בד"כ שתי שורות, האחת שורת הנתונים ובשניה השכיחויות. שכיחויות- המספרים שמראים כמה פעמים מופיע כל אחד מהנתונים בטבלה. ( הנתונים סכום)/(הנתונים מספר) = ממוצע הסתברות – הסיכוי לקבל תוצאה מסויימת . (המשתנה של השכיחות)/(השכיחויות כל סכום) = שכיחות יחסית(הסתברות) הסתברות – הסיכוי לקבל תוצאה מסויימת . (המשתנה של השכיחות)/(השכיחויות כל סכום) = שכיחות יחסית(הסתברות)

כיתה יא 804 – בני – שיעור 03א – אסימפטוטות 1

1.09K צפיות2 תגובות

הסבר על אסימפטוטות. חלק א' - אסימפטוטה אנכית

כיתה יא 802 – שיעור 05 – הנדסת המרחב – אלכסון במנסרה משולשת

208 צפיות0 תגובות

נלמד כיצד למצוא אלכסון מנסרה משולשת, על ידי שימוש במשפט פיתגורס במשולשים ישרי זווית.

כיתה יא 802 – שיעור 04 – חזקות הסבר

646 צפיות1 תגובות

נחזור על החומר שלמדנו בעבר. נלמד כיצד לפתור תרגיל שבו נתונים בסיסים שווים ומעריכים שונים. וכן העלאה בחזקה של מספר שהוא בחזקת מסויימת.

כיתה יא 802 – שיעור 28 – טריגונומטריה – מרחק נקודה מקטע

714 צפיות4 תגובות

נפתור את השאלה על ידי שימוש במשפט: מרחק נקודה מקטע - אורך האנך ( היוצר 90 מעלות עם הקטע) המורם/ המורד מהנקודה אל הקטע. וכן על ידי שימוש בנוסחת סינוס של זווית חדה במשולש ישר זווית השווה לצלע הנמצאת מול הזווית החדה חלקי היתר.

כיתה יא 802 – שיעור 07 – הנדסת המרחב – תיבה מלבנית

298 צפיות0 תגובות

נחשב את אורך אלכסון הבסיס, שהוא היתר במשולש ישר זווית כאשר הזווית הישרה היא אחת מזוויות המלבן. לצורך החישוב נשתמש במשפט פיתגורס: סכום ריבועי הניצבים שווה לריבוע היתר. נחשב את גובה התיבה – המקצועות הצדדים של פאות התיבה שווים ביניהם ונקראים גם גבהים של התיבה. נחשב את שטח הפנים = שטחי הבסיסים + שטח המעטפת. שטח המעטפת = היקף הבסיס* גובה התיבה.

כיתה יא 806 – שיעור 04ב – בני – בגרות קיץ תשע"ג – משולש ש"ש 2

216 צפיות0 תגובות

פתרון שאלה 4 בגרות קיץ תשע"ג - חלק ב' - הוכחת משפטים הקשורים לתיכונים במשולש

כיתה יא 804 – בני – שיעור 7א – פתרון תרגיל בגרות ריבוי מאורעות

195 צפיות0 תגובות

פתרון שאלת בגרות בנושא כמה מאורעות - חלק א - דיאגרמות עץ לשני מאורעות, וצמצום מרחב המדגם

כיתה יא 802 – שיעור 13 – כתיבה מדעית של מספרים

816 צפיות0 תגובות

מספר) (a בין 0-10, כפול 10 בחזקה מסויימת (n) . המספר נרשם בצורה הבאה: a*〖10〗^n כאשר 1≤a<10 למספרים גדולים - n הוא מספר שלם וחיובי. למשל: 1000 = 〖10〗^3 למספרים קטנים וחיוביים - n הוא מספר שלם ושלילי. למשל: 0.001 = 〖10〗^(-3)

כיתה יא 804 – בגרות קיץ תשע"ג – בני – שיעור 11א – גיאומטריה אנליטית

253 צפיות0 תגובות

פתרון בגרות קיץ תשע"ג. שאלה 2 - חישוב מרחקים ושיפועים בין נקודות

כיתה יא 804 – שיעור 02 – בני – סינוס סכום זוויות

404 צפיות0 תגובות

נוסחאות טריגונומטריות - נראה ונוכיח את נוסחת סינוס של סכום זוויות

כיתה יא 804 – בגרות קיץ תשע"ג – בני – שיעור 14א – גיאומטריה – משולש

142 צפיות0 תגובות

פתרון בגרות קיץ תשע"ג. שאלה 5 - גיאומטריה חלק א' - הוכחת משולש שווה שוקיים ע"פ תיכון ליתר שווה למחצית היתר, וחישוב שטח משולש

כיתה יא 804 – שיעור 01ב – בני – מבוא לטריגונומטריה 2

422 צפיות0 תגובות

מבוא לטריגונומטריה - חלק ב' - נרחיב הגדרת פונקציות טריגונומטריות לכל זוויות המעגל באמצעות מעגל היחידה

כיתה יא 802 – שיעור 34 א – טריגונומטריה – מעוין

426 צפיות0 תגובות

מעוין - מקבילית שכל צלעותיה שוות. האלכסונים של המעוין מאונכים זה לזה, חוצים זה את זה וחוצים את זוויותיו. היקף המעוין – 4* צלע המעוין. נשתמש במשפטים אלה לפתרון התרגיל. נמצא את הזווית החדה של המעוין עם שימוש בנוסחת טנגנס הזווית וכן נשתמש בנוסחת סינוס הזווית למציאת צלע המעוין.

כיתה יא 802 – שיעור 19 – סדרות המוגדרות לפי כלל הנסיגה

511 צפיות0 תגובות

סדרות המוגדרות לפי כלל הנסיגה – בד''כ נתון האיבר הראשון של הסדרה ונוסחה למציאת האיברים הבאים על ידי האיברים הקודמים. נפתור תרגיל שבו נתונים: נוסחה מסויימת המוגדרת על ידי כלל הנסיגה והאיבר הראשון שלה. נתבקש למצוא את 5 האיברים הראשונים של הסדרה. לפי השאלה נתונים גם מספר האיברים הראשונים בסדרה. נציב את כל הנתונים בנוסחה ונפתור את התרגיל.

כיתה יא 802 – שיעור 21 – גידול ודעיכה – הסבר

6.35K צפיות3 תגובות

הסבר - תהליכי הגידול והדעיכה של כמות מסויימת, הם תהליכים שבהם הכמות גדלה או מצטמצמת לאורך זמן מסויים. התהליך הזה מתנהל בקצב מעריכי, כמו סדרה הנדסית וניתן לחשב את שיעור הגידול או הדעיכה בכל פרק זמן נתון.

כיתה יא – 802 – שיעור 06 ב – בגרות חורף 2014 – התפלגות נורמלית – ממוצע גבהים 2

164 צפיות0 תגובות

תזכורת: השטח שמתחת לגרף ההתפלגות הנורמלית הוא 100% יש למצוא את הגובה המתאים ל93% של הגבהים שמעל הגובה המבוקש ואת % התלמידים שגובהם פחות מהגובה הנ''ל.

כיתה יא 804 – בני – שיעור 01 – מבוא לגיאומטריה אנליטית – ישרים

1.20K צפיות2 תגובות

חזרה על כמה נוסחאות של גיאומטריה אנליטית. משוואה של קו ישר, חישוב שיפוע, חישוב קו ע"פ שיפוע ו-2 נקודות, שיפועים של קווים מאונכים, מרחק בין 2 נקודות

כיתה יא 802 – שיעור 27 ב – מבחן תשע"ב – גדילה ודעיכה

1.91K צפיות3 תגובות

נפתור תרגיל עם המונחים הבאים: M0 – כמות/סכום התחלתי/ת בזמן אפס. t - תקופת התהליך במספר יחידות זמן. Mt - כמות/סכום סופי/ת אחרי t יחידות זמן. q – שיעור הגדילה/הדעיכה ליחידת זמן. n – אחוז בו גדלה/קטנה הכמות ההתחלתית. ונשתמש בנוסחה: Mt = M0*q^t

כיתה יא 804 – בני – שיעור 02 – נוסחאות של נגזרות

1.42K צפיות0 תגובות

מבוא לנגזרות - נלמד כמה נוסחאות הקשורות לחישוב נגזרות

עמוד 1 מתוך 912345...לסוף »