קטגוריה: כיתה יא – 802 – 3 יחידות – אלגברה

* לסידור השיעורים לפי סדר עולה לחץ על כותרת
סידור: כותרת | תאריך | פופולריות | | תגובות | אקראי Sort Ascending
הצג לפי:
עמוד 2 מתוך 3123

כיתה יא 802 – שיעור 26 – גידול ודעיכה – מציאת הריבית

378 צפיות0 תגובות

נתונים: תקופת התהליך ביחידות זמן בכל אחת מ-2 תוכניות חיסכון, הסכום הסופי בכל אחת מ-2 תוכניות החיסכון. נפתור את השאלה: באיזו תוכנית חיסכון יש % גבוה יותר שבו גדל הסכום ההתחלתי, בעזרת הנוסחאות: Mt = M0*q^t q = 1 + n/100

כיתה יא 802 – שיעור 27 א – גידול ודעיכה – ירידת משקל

300 צפיות2 תגובות

נתונים: המשקל ההתחלתי של חומר רדיואקטיבי, המשקל הסופי שלו, תקופת התהליך ביחידות זמן. לצורך מציאת אחוז השינוי של משקל החומר נשתמש בנוסחאות: Mt = M0*q^t q = 1 + n/100

כיתה יא 802 – שיעור 28 – טריגונומטריה – מרחק נקודה מקטע

597 צפיות4 תגובות

נפתור את השאלה על ידי שימוש במשפט: מרחק נקודה מקטע - אורך האנך ( היוצר 90 מעלות עם הקטע) המורם/ המורד מהנקודה אל הקטע. וכן על ידי שימוש בנוסחת סינוס של זווית חדה במשולש ישר זווית השווה לצלע הנמצאת מול הזווית החדה חלקי היתר.

כיתה יא 802 – שיעור 29 – טריגונומטריה – משולש

387 צפיות0 תגובות

נפתור תרגיל, שבו נתונים: משולש, זווית הבסיס, ואחת הצלעות שהיא היתר, נוריד גובה מקודקוד זווית הראש של המשולש ובעזרת נוסחת סינוס הזווית הנתונה, ששווה לצלע שנמצאת מול הזווית חלקי היתר נמצא את אורך הגובה.

כיתה יא 802 – שיעור 30 א – טריגונומטריה – משולש ישר זווית

633 צפיות0 תגובות

נפתור את התרגיל הלקוח ממבחן בגרות, ונשתמש במשפטים ובהגדרות האלה: משולש ישר זוית – משולש שבו זווית אחת ישרה ושתי זוויותיו האחרות חדות. היתר של משולש ישר זווית - הצלע הגדולה ביותר, שנמצאת מול הזווית הישרה. ניצבים של משולש ישר זווית – 2 הצלעות האחרות שנמצאות מול הזוויות החדות. גובה במשולש ישר זווית - אחד הניצבים או קטע היוצא מקודקוד המשולש ומאונך לצלע שמולו. חוצה זווית – קטע היוצא מקודקוד המשולש לצלע שמולו וחוצה את זווית הקודקוד ל- 2 זוויות שוות.

כיתה יא 802 – שיעור 30 ב – טריגונומטריה – משולש ישר זווית

291 צפיות0 תגובות

משולש ישר זוית – משולש שבו זווית אחת ישרה ושתי זוויותיו האחרות חדות. היתר של משולש ישר זווית - הצלע הגדולה ביותר, שנמצאת מול הזווית הישרה. ניצבים של משולש ישר זווית – 2 הצלעות האחרות שנמצאות מול הזוויות החדות. גובה במשולש ישר זווית - אחד הניצבים או קטע היוצא מקודקוד המשולש ומאונך לצלע שמולו. חוצה זווית – קטע היוצא מקודקוד המשולש לצלע שמולו וחוצה את זווית הקודקוד ל- 2 זוויות שוות.

כיתה יא 802 – שיעור 31 – טריגונומטריה – משולש שווה שוקיים

678 צפיות0 תגובות

גובה - קטע היוצא מקודקוד המשולש ומאונך לצלע שמולו. משפט - הגובה לבסיס במשולש שווה שוקיים, הוא גם חוצה זווית הראש וגם תיכון לבסיס.

כיתה יא 802 – שיעור 32 – טריגונומטריה – משולש שווה צלעות

319 צפיות0 תגובות

משולש שווה צלעות – משולש שבו כל שלוש הצלעות שוות. הזוויות שוות כל אחת ל 60 מעלות. חוצה זווית – קטע היוצא מקודקוד המשולש לצלע שמולו וחוצה את זווית הקודקוד ל- 2 זוויות שוות. היקף = 3* אורך צלע המשולש. משפט: במשולש שווה צלעות’ התיכון הוא גם גובה וגם חוצה זווית.

כיתה יא 802 – שיעור 33 – טריגונומטריה – טרפז ישר זווית

2.44K צפיות3 תגובות

טרפז – מרובע שבו רק זוג אחד של צלעות מקבילות הנקראות בסיסי הטרפז וזוג הצלעות השני נקרא שוקי הטרפז. טרפז ישר זווית – טרפז שאחת מזוויותיו ישרה (בת 90 מעלות). גובה הטרפז - קטע היוצא מקודקוד של הטרפז ומאונך לצלע שממולו. היקף הטרפז = סכום צלעותיו.

כיתה יא 802 – שיעור 34 א – טריגונומטריה – מעוין

316 צפיות0 תגובות

מעוין - מקבילית שכל צלעותיה שוות. האלכסונים של המעוין מאונכים זה לזה, חוצים זה את זה וחוצים את זוויותיו. היקף המעוין – 4* צלע המעוין. נשתמש במשפטים אלה לפתרון התרגיל. נמצא את הזווית החדה של המעוין עם שימוש בנוסחת טנגנס הזווית וכן נשתמש בנוסחת סינוס הזווית למציאת צלע המעוין.

כיתה יא 802 – שיעור 36 א – ממוצע והסתברות – פועלים ושכר

423 צפיות1 תגובות

נפתור שאלה ממבחן בגרות ונשתמש במונחים הבאים: טבלת שכיחות - בטבלה זו יהיו בד"כ שתי שורות, האחת שורת הנתונים ובשניה השכיחויות. שכיחויות- המספרים שמראים כמה פעמים מופיע כל אחד מהנתונים בטבלה. ( הנתונים סכום)/(הנתונים מספר) = ממוצע הסתברות – הסיכוי לקבל תוצאה מסויימת . (המשתנה של השכיחות)/(השכיחויות כל סכום) = שכיחות יחסית(הסתברות) הסתברות – הסיכוי לקבל תוצאה מסויימת . (המשתנה של השכיחות)/(השכיחויות כל סכום) = שכיחות יחסית(הסתברות)

כיתה יא 802 – שיעור 36 ב – הסתברות – קובייה

307 צפיות0 תגובות

נפתור שאלה בנושא הסתברות הופעת אותיות על פאות קובייה ונשתמש בנוסחת ההסתברות: (המשתנה של השכיחות)/(השכיחויות כל סכום) = שכיחות יחסית(הסתברות)

כיתה יא 802 – שיעור 27 ב – מבחן תשע"ב – גדילה ודעיכה

1.54K צפיות3 תגובות

נפתור תרגיל עם המונחים הבאים: M0 – כמות/סכום התחלתי/ת בזמן אפס. t - תקופת התהליך במספר יחידות זמן. Mt - כמות/סכום סופי/ת אחרי t יחידות זמן. q – שיעור הגדילה/הדעיכה ליחידת זמן. n – אחוז בו גדלה/קטנה הכמות ההתחלתית. ונשתמש בנוסחה: Mt = M0*q^t

כיתה יא 802 – שיעור 14 ג – מבחן תשע"ב – סדרה חשבונית

909 צפיות0 תגובות

נרשום את 6 האיברים הראשונים בסדרה: נתון האיבר הראשון בסדרה וכן הפרש הסדרה ששווה להפרש האיבר הראשון מהאיבר השני. את סכום האיברים נחשב עם שימוש בנוסחה הנתונה.

כיתה יא 802 – שיעור 34 ב – מבחן תשע"ב – טריגונומטריה

361 צפיות0 תגובות

לצורך פתרון השאלה נשתמש ב : טנגנס הזווית בעלת 75 מעלות, טנגנס הזווית 38 מעלות.

כיתה יא 802 – שיעור 40 ב – מבחן תשע"ב – הסתברות

468 צפיות3 תגובות

לפתרון התרגיל נשתמש במונחים ובנוסחאות הבאות: טבלת שכיחות - בטבלה זו יהיו בד"כ שתי שורות, האחת שורת הנתונים ובשניה השכיחויות. שכיחויות- המספרים שמראים כמה פעמים מופיע כל אחד מהנתונים בטבלה. הסתברות – הסיכוי לקבל תוצאה מסויימת . ( הנתונים סכום)/(הנתונים מספר) = ממוצע (המשתנה של השכיחות)/(השכיחויות כל סכום) = שכיחות יחסית

כיתה יא 802 – שיעור 40 ג – מבחן תשע"ב – הסתברות

915 צפיות2 תגובות

לפתרון השאלה נשתמש במשפטים הבאים: • לחישוב ההסתברות שמאורע אחד יקרה או שמאורע אחר יקרה, מחברים את ההסתברויות של כל מאורע בנפרד. • מאורע משלים של אירוע x , הוא אירוע שבו x לא יקרה. • לחישוב ההסתברות ש - 2 מאורעות יקרו בו זמנית, כופלים את ההסתברויות של כל מאורע בנפרד. • ההסתברויות של כל הענפים היוצאים ממקום מסויים שווה לאחד.

כיתה יא 802 – שיעור 37 – הסתברות – בחירת מועמד

165 צפיות0 תגובות

נפתור שאלה על : הסתברות שנעמה - בת אחת - תיבחר מתוך כל התלמידים המועמדים, כמו כן הסתברות שהילה תיבחר מכיתה אחרת שבה יש תנאי לבחור, אם המטבע יראה "פנים" , תבחר בת אחת מתוך כלל התלמידות,

כיתה יא 802 – שיעור 38 – הסתברות – כדורים בכד

460 צפיות2 תגובות

נפתור את השאלה בעזרת: דיאגרמת עץ, נסביר מהי תחנה התחלתית – הנקודה שבה מתחיל העץ. תחנה סופית – הנקודה שבה מסתיים העץ – תוצאה אפשרית בניסוי. • לחישוב ההסתברות שמאורע אחד יקרה וגם מאורע אחר יקרה, כופלים את ההסתברויות של כל מאורע בנפרד. • לחישוב ההסתברות שמאורע אחד יקרה או שמאורע אחר יקרה, מחברים את ההסתברויות של כל מאורע בנפרד. • ההסתברויות של כל הענפים היוצאים מנקודה מסויימת שווה לאחד.

כיתה יא 802 – שיעור 39 – הסתברות ריבועים במסגרת

104 צפיות0 תגובות

נפתור את התרגיל על ידי כך שנחלק את המלבן הנתון באורך צלע הריבוע על מנת לקבל את מספר הריבועים שנכנסים למלבן. נספור את מספר הריבועים במלבן ש-2 מצלעותיהם צבועות בסגול.

כיתה יא 802 – שיעור 40 א – הסתברות 3 מאורעות בלתי תלויים

321 צפיות0 תגובות

לפתרון התרגיל נבנה דיאגרמת עץ מתאימה לנתוני השאלה. • לחישוב ההסתברות ש - 2 מאורעות בלתי תלויים ייקרו בו זמנית, כופלים את ההסתברויות של כל מאורע בנפרד. • ההסתברויות של כל הענפים היוצאים ממקום מסויים שווה לאחד • מאורע משלים של אירוע x , הוא אירוע שבו x לא יקרה. • לחישוב ההסתברות שמאורע אחד יקרה או שמאורע אחר יקרה, מחברים את ההסתברויות של כל מאורע בנפרד.

כיתה יא 802 – שיעור 41 – התפלגות נורמלית – הסבר

1.75K צפיות0 תגובות

נפתור את התרגיל עם הסבר על התפלגות נורמלית: הממוצע הוא הערך של המשתנה ש- 50% ממספר המשתנים גדולים בערכם ממנו ו- 50% ממספר המשתנים קטנים בערכם ממנו. בהתפלגות נורמלית, החציון, השכיח והממוצע מתלכדים. השטח הכולל מתחת לעקומה מתאים לכלל האוכלוסיה ונחשב כ – 100%. המשתנים מסודרים בצורה סימטרית ביחס לציר, הקובע את מקום הממוצע. סטיית התקן – S – מודדת את מידת פיזור הנתונים משני צידי הממוצע.

כיתה יא 802 – שיעור 42 – התפלגות נורמלית – קבלה לאוניברסיטה

227 צפיות0 תגובות

נפתור את השאלה עם שימוש ההגדרות הבאות: הממוצע הוא הערך של המשתנה ש- 50% ממספר המשתנים גדולים בערכם ממנו ו- 50% ממספר המשתנים קטנים בערכם ממנו. בהתפלגות נורמלית, החציון, השכיח והממוצע מתלכדים. השטח הכולל מתחת לעקומה מתאים לכלל האוכלוסיה ונחשב כ – 100%. המשתנים מסודרים בצורה סימטרית ביחס לציר, הקובע את מקום הממוצע. סטיית התקן – S – מודדת את מידת פיזור הנתונים משני צידי הממוצע.

כיתה יא 802 – שיעור 43 – התפלגות נורמלית – הצלחה במבחן

531 צפיות2 תגובות

נשתמש בכללים הבאים: הממוצע הוא הערך של המשתנה ש- 50% ממספר המשתנים גדולים בערכם ממנו ו- 50% ממספר המשתנים קטנים בערכם ממנו. בהתפלגות נורמלית, החציון, השכיח והממוצע מתלכדים. השטח הכולל מתחת לעקומה מתאים לכלל האוכלוסיה ונחשב כ – 100%. המשתנים מסודרים בצורה סימטרית ביחס לציר, הקובע את מקום הממוצע. סטיית התקן – S – מודדת את מידת פיזור הנתונים משני צידי הממוצע.

כיתה יא 802 – שיעור 44 – התפלגות נורמלית – תנובת הפרות

207 צפיות0 תגובות

נפתור את התרגיל על ידי שימוש בנתונים: נמצא שיש לנו 2 משוואות עם 2 נעלמים, נפתור אותן ונקבל את סטיית התקן ואת הממוצע. יש להבין שהממוצע נמצא בדיוק באמצע גרף ההתפלגות הנורמלית. ולכן השטח מתחת לעקומה שנמצא על הציר האופקי, מימין לממוצע שווה ל- 50%.

כיתה יא 802 – שיעור 45 – מבחן תשע"ב – התפלגות נורמלית

491 צפיות2 תגובות

נמצא את סטיית התקן, לפי הנתונים. נמצא את ההסתברות של הביצים ששוקלות פחות מ-66 גרם, לפי פיזור הנתונים מצד ימין לממוצע.

כיתה יא 802 – שיעור 35 א – מבוא להסתברות 1

64 צפיות0 תגובות

מבוא להסתברות חלק א' - היכרות עם המושג הסתברות והגדרת מושגי יסוד

כיתה יא 802 – שיעור 35 ב – מבוא להסתברות 2

46 צפיות0 תגובות

מבוא להסתברות חלק ב' - סימולציה לקשר בין שכיחות יחסית והסתברות

עמוד 2 מתוך 3123