קטגוריה: כיתה יא – 802 – 3 יחידות – אלגברה

* לסידור השיעורים לפי סדר עולה לחץ על כותרת
סידור: כותרת | תאריך | פופולריות | | תגובות | אקראי Sort Descending
הצג לפי:
עמוד 1 מתוך 3123

כיתה יא 802 – שיעור 28 – טריגונומטריה – מרחק נקודה מקטע

596 צפיות4 תגובות

נפתור את השאלה על ידי שימוש במשפט: מרחק נקודה מקטע - אורך האנך ( היוצר 90 מעלות עם הקטע) המורם/ המורד מהנקודה אל הקטע. וכן על ידי שימוש בנוסחת סינוס של זווית חדה במשולש ישר זווית השווה לצלע הנמצאת מול הזווית החדה חלקי היתר.

כיתה יא 802 – שיעור 20 – המשך סדרות המוגדרות לפי כלל הנסיגה

222 צפיות0 תגובות

התנאי לקיום סדרה הנדסית: כל איבר אמצעי בסדרה הנדסית שאיבריה חיוביים, הוא ממוצע הנדסי של 2 איברים הסמוכים לו. a , b, c הם שלושה איברים סמוכים של סדרה הנדסית; b/a = c/b נפתור תרגיל הלקוח מבחינת בגרות בנושא. בתרגיל נתונים: האיבר הראשון בסדרה, נוסחה למציאת האיברים הבאים בסדרה. נתבקש למצוא מספר שאם נוסיף אותו ל - 3 האיברים הראשונים של הסדרה, נקבל סדרה הנדסית. למספר הזה נקרא x ונציב אותו בנתונים.

כיתה יא 802 – שיעור 35 ו – ניתוח מאורעות תלויים 2

26 צפיות0 תגובות

מבוא להסתברות - ניתוח מאורעות תלויים - חלק ב - טבלת פרופורציה (יחס) דו-מימדית, דיאגרמת עץ

כיתה יא 802 – שיעור 30 א – טריגונומטריה – משולש ישר זווית

630 צפיות0 תגובות

נפתור את התרגיל הלקוח ממבחן בגרות, ונשתמש במשפטים ובהגדרות האלה: משולש ישר זוית – משולש שבו זווית אחת ישרה ושתי זוויותיו האחרות חדות. היתר של משולש ישר זווית - הצלע הגדולה ביותר, שנמצאת מול הזווית הישרה. ניצבים של משולש ישר זווית – 2 הצלעות האחרות שנמצאות מול הזוויות החדות. גובה במשולש ישר זווית - אחד הניצבים או קטע היוצא מקודקוד המשולש ומאונך לצלע שמולו. חוצה זווית – קטע היוצא מקודקוד המשולש לצלע שמולו וחוצה את זווית הקודקוד ל- 2 זוויות שוות.

כיתה יא 802 – שיעור 40 א – הסתברות 3 מאורעות בלתי תלויים

318 צפיות0 תגובות

לפתרון התרגיל נבנה דיאגרמת עץ מתאימה לנתוני השאלה. • לחישוב ההסתברות ש - 2 מאורעות בלתי תלויים ייקרו בו זמנית, כופלים את ההסתברויות של כל מאורע בנפרד. • ההסתברויות של כל הענפים היוצאים ממקום מסויים שווה לאחד • מאורע משלים של אירוע x , הוא אירוע שבו x לא יקרה. • לחישוב ההסתברות שמאורע אחד יקרה או שמאורע אחר יקרה, מחברים את ההסתברויות של כל מאורע בנפרד.

כיתה יא 802 – שיעור 14 ב' – סכום סדרה חשבונית

1.02K צפיות0 תגובות

נפתור שאלה ממבחן בגרות בנושא סכום של סדרה חשבונית . נתון הפרש הסדרה, האיבר הראשון וסכום הסדרה. נמצא את מיקום האיבר בסדרה.

כיתה יא 802 – שיעור 07 – תרגיל חזקות עם צמצום

699 צפיות0 תגובות

נפתור תרגיל של שבר כאשר במונה ובמכנה יש ביטויים אלגבריים עם חזקות ועל מנת לפתור את התרגיל נשתמש בכללי החזקות.

כיתה יא 802 – שיעור 27 ב – מבחן תשע"ב – גדילה ודעיכה

1.54K צפיות3 תגובות

נפתור תרגיל עם המונחים הבאים: M0 – כמות/סכום התחלתי/ת בזמן אפס. t - תקופת התהליך במספר יחידות זמן. Mt - כמות/סכום סופי/ת אחרי t יחידות זמן. q – שיעור הגדילה/הדעיכה ליחידת זמן. n – אחוז בו גדלה/קטנה הכמות ההתחלתית. ונשתמש בנוסחה: Mt = M0*q^t

כיתה יא 802 – שיעור 44 – התפלגות נורמלית – תנובת הפרות

207 צפיות0 תגובות

נפתור את התרגיל על ידי שימוש בנתונים: נמצא שיש לנו 2 משוואות עם 2 נעלמים, נפתור אותן ונקבל את סטיית התקן ואת הממוצע. יש להבין שהממוצע נמצא בדיוק באמצע גרף ההתפלגות הנורמלית. ולכן השטח מתחת לעקומה שנמצא על הציר האופקי, מימין לממוצע שווה ל- 50%.

כיתה יא 802 – שיעור 23 – גידול ודעיכה – גודל אוכלוסיה

625 צפיות2 תגובות

נתונים: גידול האחוז של מספר התושבים וכן מספר התושבים היום. אנו מתבקשים למצוא: את תקופת התהליך במספר יחידות זמן. את מספר התושבים כעבור תקופה מסויימת. לפתרון השאלה נשתמש בנוסחה: Mt = M0*q^t כמו כן נשתמש בנוסחה: q = 1 + n/100

כיתה יא 802 – שיעור 37 – הסתברות – בחירת מועמד

164 צפיות0 תגובות

נפתור שאלה על : הסתברות שנעמה - בת אחת - תיבחר מתוך כל התלמידים המועמדים, כמו כן הסתברות שהילה תיבחר מכיתה אחרת שבה יש תנאי לבחור, אם המטבע יראה "פנים" , תבחר בת אחת מתוך כלל התלמידות,

כיתה יא 802 – שיעור 12 ב – המשך משוואות מעריכיות

260 צפיות0 תגובות

משוואה מעריכית – משוואה שהנעלם שלה מופיע במעריך החזקה. לפתרון משוואות מעריכיות נשתמש בכלל: כאשר ב-2 אגפי המשוואה מופיעות חזקות בעלות בסיס זהה, יש להשוות את המעריכים.

כיתה יא 802 – שיעור 35 ד – תלות בין מאורעות

26 צפיות0 תגובות

נגדיר מאורעות תלויים ובלתי תלויים, ואת נוסחת ההסתברות המותנית

כיתה יא 802 – שיעור 34 ב – מבחן תשע"ב – טריגונומטריה

357 צפיות0 תגובות

לצורך פתרון השאלה נשתמש ב : טנגנס הזווית בעלת 75 מעלות, טנגנס הזווית 38 מעלות.

כיתה יא 802 – שיעור 45 – מבחן תשע"ב – התפלגות נורמלית

490 צפיות2 תגובות

נמצא את סטיית התקן, לפי הנתונים. נמצא את ההסתברות של הביצים ששוקלות פחות מ-66 גרם, לפי פיזור הנתונים מצד ימין לממוצע.

כיתה יא 802 – שיעור 01 – פתרון גרפי של אי שיוויונות

1.30K צפיות1 תגובות

פתרון סעיף א' של השאלה הוא להשוות בין 2 הפונקציות הנתונות ועל ידי כך למצוא את נקודות החיתוך שלהן. פתרון סעיף ב' של השאלה הוא למצוא עבור אילו ערכי x נמצא הגרף של הפונקציה f(x) מתחת לגרף של הפונקציה g(x)

כיתה יא 802 – שיעור 16 – סדרה הנדסית – היקף ושטח מעגל

432 צפיות0 תגובות

התנאי לקיום סדרה הנדסית: כל איבר אמצעי בסדרה הנדסית שאיבריה חיוביים, הוא ממוצע הנדסי של 2 איברים הסמוכים לו. a , b, c הם שלושה איברים סמוכים של סדרה הנדסית; b/a = c/b

כיתה יא 802 – שיעור 12 א – משוואות מעריכיות

2.08K צפיות2 תגובות

משוואה מעריכית – משוואה שהנעלם שלה מופיע במעריך החזקה. לפתרון משוואות מעריכיות נשתמש בכלל: כאשר ב-2 אגפי המשוואה מופיעות חזקות בעלות בסיס זהה, יש להשוות את המעריכים.

כיתה יא 802 – שיעור 41 – התפלגות נורמלית – הסבר

1.74K צפיות0 תגובות

נפתור את התרגיל עם הסבר על התפלגות נורמלית: הממוצע הוא הערך של המשתנה ש- 50% ממספר המשתנים גדולים בערכם ממנו ו- 50% ממספר המשתנים קטנים בערכם ממנו. בהתפלגות נורמלית, החציון, השכיח והממוצע מתלכדים. השטח הכולל מתחת לעקומה מתאים לכלל האוכלוסיה ונחשב כ – 100%. המשתנים מסודרים בצורה סימטרית ביחס לציר, הקובע את מקום הממוצע. סטיית התקן – S – מודדת את מידת פיזור הנתונים משני צידי הממוצע.

כיתה יא 802 – שיעור 38 – הסתברות – כדורים בכד

455 צפיות2 תגובות

נפתור את השאלה בעזרת: דיאגרמת עץ, נסביר מהי תחנה התחלתית – הנקודה שבה מתחיל העץ. תחנה סופית – הנקודה שבה מסתיים העץ – תוצאה אפשרית בניסוי. • לחישוב ההסתברות שמאורע אחד יקרה וגם מאורע אחר יקרה, כופלים את ההסתברויות של כל מאורע בנפרד. • לחישוב ההסתברות שמאורע אחד יקרה או שמאורע אחר יקרה, מחברים את ההסתברויות של כל מאורע בנפרד. • ההסתברויות של כל הענפים היוצאים מנקודה מסויימת שווה לאחד.

כיתה יא 802 – שיעור 21 – גידול ודעיכה – הסבר

4.24K צפיות3 תגובות

הסבר - תהליכי הגידול והדעיכה של כמות מסויימת, הם תהליכים שבהם הכמות גדלה או מצטמצמת לאורך זמן מסויים. התהליך הזה מתנהל בקצב מעריכי, כמו סדרה הנדסית וניתן לחשב את שיעור הגידול או הדעיכה בכל פרק זמן נתון.

כיתה יא 802 – שיעור 13 – כתיבה מדעית של מספרים

564 צפיות0 תגובות

מספר) (a בין 0-10, כפול 10 בחזקה מסויימת (n) . המספר נרשם בצורה הבאה: a*〖10〗^n כאשר 1≤a<10 למספרים גדולים - n הוא מספר שלם וחיובי. למשל: 1000 = 〖10〗^3 למספרים קטנים וחיוביים - n הוא מספר שלם ושלילי. למשל: 0.001 = 〖10〗^(-3)

כיתה יא 802 – שיעור 43 – התפלגות נורמלית – הצלחה במבחן

530 צפיות2 תגובות

נשתמש בכללים הבאים: הממוצע הוא הערך של המשתנה ש- 50% ממספר המשתנים גדולים בערכם ממנו ו- 50% ממספר המשתנים קטנים בערכם ממנו. בהתפלגות נורמלית, החציון, השכיח והממוצע מתלכדים. השטח הכולל מתחת לעקומה מתאים לכלל האוכלוסיה ונחשב כ – 100%. המשתנים מסודרים בצורה סימטרית ביחס לציר, הקובע את מקום הממוצע. סטיית התקן – S – מודדת את מידת פיזור הנתונים משני צידי הממוצע.

כיתה יא 802 – שיעור 27 א – גידול ודעיכה – ירידת משקל

297 צפיות2 תגובות

נתונים: המשקל ההתחלתי של חומר רדיואקטיבי, המשקל הסופי שלו, תקופת התהליך ביחידות זמן. לצורך מציאת אחוז השינוי של משקל החומר נשתמש בנוסחאות: Mt = M0*q^t q = 1 + n/100

כיתה יא 802 – שיעור 35 ה – ניתוח מאורעות תלויים 1

31 צפיות0 תגובות

מבוא להסתברות - ניתוח מאורעות תלויים - חלק א - מהם שני מאורעות תלויים וטבלת שכיחות דו מימדית

כיתה יא 802 – שיעור 09 א' – שורשים הסבר

446 צפיות0 תגובות

נלמד חוקים, כללים והגדרות של פעולת הוצאת שורש ממספר חיובי.

כיתה יא 802 – שיעור 40 ג – מבחן תשע"ב – הסתברות

909 צפיות2 תגובות

לפתרון השאלה נשתמש במשפטים הבאים: • לחישוב ההסתברות שמאורע אחד יקרה או שמאורע אחר יקרה, מחברים את ההסתברויות של כל מאורע בנפרד. • מאורע משלים של אירוע x , הוא אירוע שבו x לא יקרה. • לחישוב ההסתברות ש - 2 מאורעות יקרו בו זמנית, כופלים את ההסתברויות של כל מאורע בנפרד. • ההסתברויות של כל הענפים היוצאים ממקום מסויים שווה לאחד.

כיתה יא 802 – שיעור 11 – משוואות עם חזקות

550 צפיות1 תגובות

מקרה שבו המעריך זוגי –– פתרון המשוואה הוא: מספר חיובי ומספר שלילי דוגמה למקרה שבו יש למשוואה פתרון אחד חיובי: מקרה שבו המעריך אי-זוגי . דוגמה למקרה שבו יש למשוואה פתרון אחד שלילי: מקרה שבו המעריך אי-זוגי דוגמה למקרה שבו יש למשוואה פתרון אחד שלילי: מקרה שבו המעריך אי-זוגי דוגמה למקרה שבו למשוואה אין פתרון:

עמוד 1 מתוך 3123