קטגוריה: כיתה יא – 802 – 3 יחידות – אלגברה

* לסידור השיעורים לפי סדר עולה לחץ על כותרת
סידור: כותרת | תאריך | פופולריות | | תגובות | אקראי Sort Descending
הצג לפי:
עמוד 1 מתוך 3123

כיתה יא 802 – שיעור 12 א – משוואות מעריכיות

2.70K צפיות2 תגובות

משוואה מעריכית – משוואה שהנעלם שלה מופיע במעריך החזקה. לפתרון משוואות מעריכיות נשתמש בכלל: כאשר ב-2 אגפי המשוואה מופיעות חזקות בעלות בסיס זהה, יש להשוות את המעריכים.

כיתה יא 802 – שיעור 27 א – גידול ודעיכה – ירידת משקל

414 צפיות2 תגובות

נתונים: המשקל ההתחלתי של חומר רדיואקטיבי, המשקל הסופי שלו, תקופת התהליך ביחידות זמן. לצורך מציאת אחוז השינוי של משקל החומר נשתמש בנוסחאות: Mt = M0*q^t q = 1 + n/100

כיתה יא 802 – שיעור 05 – חזקות עם מעריך טבעי

451 צפיות0 תגובות

נפתור תרגילים בהם נתונים שברים כאשר במונה ובמכנה יש מספרים שהועלו בחזקה .

כיתה יא 802 – שיעור 38 – הסתברות – כדורים בכד

812 צפיות2 תגובות

נפתור את השאלה בעזרת: דיאגרמת עץ, נסביר מהי תחנה התחלתית – הנקודה שבה מתחיל העץ. תחנה סופית – הנקודה שבה מסתיים העץ – תוצאה אפשרית בניסוי. • לחישוב ההסתברות שמאורע אחד יקרה וגם מאורע אחר יקרה, כופלים את ההסתברויות של כל מאורע בנפרד. • לחישוב ההסתברות שמאורע אחד יקרה או שמאורע אחר יקרה, מחברים את ההסתברויות של כל מאורע בנפרד. • ההסתברויות של כל הענפים היוצאים מנקודה מסויימת שווה לאחד.

כיתה יא 802 – שיעור 15 – סדרה הנדסית – הסבר

2.37K צפיות0 תגובות

סדרה הנדסית – סדרה שבה כל איבר הוא מכפלה של האיבר הקודם במספר קבוע הנקרא מנת הסדרה. a1 – ערך האיבר הראשון בסדרה. n – מיקום האיבר בסדרה. an - האיבר הכללי בסדרה. d – מנת הסדרה. התנאי לקיום סדרה הנדסית: כל איבר אמצעי בסדרה הנדסית שאיבריה חיוביים, הוא ממוצע הנדסי של 2 איברים הסמוכים לו. a , b, c הם שלושה איברים סמוכים של סדרה הנדסית; b/a = c/b

כיתה יא 802 – שיעור 40 ב – מבחן תשע"ב – הסתברות

615 צפיות3 תגובות

לפתרון התרגיל נשתמש במונחים ובנוסחאות הבאות: טבלת שכיחות - בטבלה זו יהיו בד"כ שתי שורות, האחת שורת הנתונים ובשניה השכיחויות. שכיחויות- המספרים שמראים כמה פעמים מופיע כל אחד מהנתונים בטבלה. הסתברות – הסיכוי לקבל תוצאה מסויימת . ( הנתונים סכום)/(הנתונים מספר) = ממוצע (המשתנה של השכיחות)/(השכיחויות כל סכום) = שכיחות יחסית

כיתה יא 802 – שיעור 35 ה – ניתוח מאורעות תלויים 1

51 צפיות0 תגובות

מבוא להסתברות - ניתוח מאורעות תלויים - חלק א - מהם שני מאורעות תלויים וטבלת שכיחות דו מימדית

כיתה יא 802 – שיעור 19 – סדרות המוגדרות לפי כלל הנסיגה

499 צפיות0 תגובות

סדרות המוגדרות לפי כלל הנסיגה – בד''כ נתון האיבר הראשון של הסדרה ונוסחה למציאת האיברים הבאים על ידי האיברים הקודמים. נפתור תרגיל שבו נתונים: נוסחה מסויימת המוגדרת על ידי כלל הנסיגה והאיבר הראשון שלה. נתבקש למצוא את 5 האיברים הראשונים של הסדרה. לפי השאלה נתונים גם מספר האיברים הראשונים בסדרה. נציב את כל הנתונים בנוסחה ונפתור את התרגיל.

כיתה יא 802 – שיעור 33 – טריגונומטריה – טרפז ישר זווית

3.10K צפיות3 תגובות

טרפז – מרובע שבו רק זוג אחד של צלעות מקבילות הנקראות בסיסי הטרפז וזוג הצלעות השני נקרא שוקי הטרפז. טרפז ישר זווית – טרפז שאחת מזוויותיו ישרה (בת 90 מעלות). גובה הטרפז - קטע היוצא מקודקוד של הטרפז ומאונך לצלע שממולו. היקף הטרפז = סכום צלעותיו.

כיתה יא 802 – שיעור 14 א' – סדרה חשבונית – הסבר

2.25K צפיות2 תגובות

סדרה חשבונית – היא סדרה שבה ההפרש ) (d בין כל 2 איברים סמוכים ( (a2-a1 הוא גודל קבוע. a1 – ערך האיבר הראשון בסדרה. n – מיקום האיבר בסדרה. an - האיבר הכללי בסדרה. d – הפרש הסדרה, כאשר הפרש הסדרה חיובי הסדרה נקראת: סדרה עולה . כלומר כל איבר גדול מהאיבר הקודם לו. כאשר הפרש הסדרה שלילי הסדרה נקראת: סדרה יורדת. כלומר כל איבר קטן מהאיבר הקודם לו.

כיתה יא 802 – שיעור 28 – טריגונומטריה – מרחק נקודה מקטע

703 צפיות4 תגובות

נפתור את השאלה על ידי שימוש במשפט: מרחק נקודה מקטע - אורך האנך ( היוצר 90 מעלות עם הקטע) המורם/ המורד מהנקודה אל הקטע. וכן על ידי שימוש בנוסחת סינוס של זווית חדה במשולש ישר זווית השווה לצלע הנמצאת מול הזווית החדה חלקי היתר.

כיתה יא 802 – שיעור 41 – התפלגות נורמלית – הסבר

2.72K צפיות0 תגובות

נפתור את התרגיל עם הסבר על התפלגות נורמלית: הממוצע הוא הערך של המשתנה ש- 50% ממספר המשתנים גדולים בערכם ממנו ו- 50% ממספר המשתנים קטנים בערכם ממנו. בהתפלגות נורמלית, החציון, השכיח והממוצע מתלכדים. השטח הכולל מתחת לעקומה מתאים לכלל האוכלוסיה ונחשב כ – 100%. המשתנים מסודרים בצורה סימטרית ביחס לציר, הקובע את מקום הממוצע. סטיית התקן – S – מודדת את מידת פיזור הנתונים משני צידי הממוצע.

כיתה יא 802 – שיעור 20 – המשך סדרות המוגדרות לפי כלל הנסיגה

312 צפיות0 תגובות

התנאי לקיום סדרה הנדסית: כל איבר אמצעי בסדרה הנדסית שאיבריה חיוביים, הוא ממוצע הנדסי של 2 איברים הסמוכים לו. a , b, c הם שלושה איברים סמוכים של סדרה הנדסית; b/a = c/b נפתור תרגיל הלקוח מבחינת בגרות בנושא. בתרגיל נתונים: האיבר הראשון בסדרה, נוסחה למציאת האיברים הבאים בסדרה. נתבקש למצוא מספר שאם נוסיף אותו ל - 3 האיברים הראשונים של הסדרה, נקבל סדרה הנדסית. למספר הזה נקרא x ונציב אותו בנתונים.

כיתה יא 802 – שיעור 29 – טריגונומטריה – משולש

512 צפיות0 תגובות

נפתור תרגיל, שבו נתונים: משולש, זווית הבסיס, ואחת הצלעות שהיא היתר, נוריד גובה מקודקוד זווית הראש של המשולש ובעזרת נוסחת סינוס הזווית הנתונה, ששווה לצלע שנמצאת מול הזווית חלקי היתר נמצא את אורך הגובה.

כיתה יא 802 – שיעור 24 – גידול ודעיכה – התחלקות חיידקים

668 צפיות0 תגובות

נמצא את T - תקופת התהליך במספר יחידות זמן, על ידי כך שנשאל: כמה יחידות של חצי שעה יש ב7 שעות? נמצא את Q - שיעור הגידול, נתון שכל חיידק מתחלק ל-2 כלומר : קודם היה אחד, ועכשיו יש 2 וגם 2 אלה- כל אחד מהם יתחלק ל-2 ויהיו לנו 4; כלומר שיעור הגידול הוא 2. וכן הכמות ההתחלתית של החיידקים. אנו מתבקשים למצוא: את כמות החיידקים הסופית.

כיתה יא 802 – שיעור 32 – טריגונומטריה – משולש שווה צלעות

403 צפיות0 תגובות

משולש שווה צלעות – משולש שבו כל שלוש הצלעות שוות. הזוויות שוות כל אחת ל 60 מעלות. חוצה זווית – קטע היוצא מקודקוד המשולש לצלע שמולו וחוצה את זווית הקודקוד ל- 2 זוויות שוות. היקף = 3* אורך צלע המשולש. משפט: במשולש שווה צלעות’ התיכון הוא גם גובה וגם חוצה זווית.

כיתה יא 802 – שיעור 35 א – מבוא להסתברות 1

108 צפיות0 תגובות

מבוא להסתברות חלק א' - היכרות עם המושג הסתברות והגדרת מושגי יסוד

כיתה יא 802 – שיעור 35 ג – קבוצות ודיאגרמת ון

37 צפיות0 תגובות

נלמד על הסתברות של מאורעות המורכבים מכמה קבוצות, ועל דיאגרמות ון.

כיתה יא 802 – שיעור 23 – גידול ודעיכה – גודל אוכלוסיה

848 צפיות2 תגובות

נתונים: גידול האחוז של מספר התושבים וכן מספר התושבים היום. אנו מתבקשים למצוא: את תקופת התהליך במספר יחידות זמן. את מספר התושבים כעבור תקופה מסויימת. לפתרון השאלה נשתמש בנוסחה: Mt = M0*q^t כמו כן נשתמש בנוסחה: q = 1 + n/100

כיתה יא 802 – שיעור 43 – התפלגות נורמלית – הצלחה במבחן

698 צפיות2 תגובות

נשתמש בכללים הבאים: הממוצע הוא הערך של המשתנה ש- 50% ממספר המשתנים גדולים בערכם ממנו ו- 50% ממספר המשתנים קטנים בערכם ממנו. בהתפלגות נורמלית, החציון, השכיח והממוצע מתלכדים. השטח הכולל מתחת לעקומה מתאים לכלל האוכלוסיה ונחשב כ – 100%. המשתנים מסודרים בצורה סימטרית ביחס לציר, הקובע את מקום הממוצע. סטיית התקן – S – מודדת את מידת פיזור הנתונים משני צידי הממוצע.

כיתה יא 802 – שיעור 22 – גידול ודעיכה – מכירת רכב

1.10K צפיות0 תגובות

פתרון השאלה הוא על ידי שימוש בנוסחאות הבאות למציאת המחיר ההתחלתי, כאשר נתונים: תקופת התהליך ביחידות זמן, אחוז הגידול, והמחיר הסופי. Mt = M0*q^t q = 1 + n/100

כיתה יא 802 – שיעור 40 ג – מבחן תשע"ב – הסתברות

1.22K צפיות2 תגובות

לפתרון השאלה נשתמש במשפטים הבאים: • לחישוב ההסתברות שמאורע אחד יקרה או שמאורע אחר יקרה, מחברים את ההסתברויות של כל מאורע בנפרד. • מאורע משלים של אירוע x , הוא אירוע שבו x לא יקרה. • לחישוב ההסתברות ש - 2 מאורעות יקרו בו זמנית, כופלים את ההסתברויות של כל מאורע בנפרד. • ההסתברויות של כל הענפים היוצאים ממקום מסויים שווה לאחד.

כיתה יא 802 – שיעור 06 – חזקות עם מעריך שלילי ואפס

407 צפיות0 תגובות

כלל: כל מספר (שונה מ-0) בחזקת 0 שווה ל - 1 a^0 = 1 כלל: כל מספר (שונה מ-0) בחזקת מעריך שלילי שווה למספר ההפוך/ההופכי של המספר בחזקת אותו מעריך כשהוא חיובי.

כיתה יא 802 – שיעור 03 – קריאת גרפים – תספורת

502 צפיות0 תגובות

נלמד לקרוא את הנתונים של הגרף, להבינם ולענות על השאלות.

כיתה יא 802 – שיעור 44 – התפלגות נורמלית – תנובת הפרות

313 צפיות0 תגובות

נפתור את התרגיל על ידי שימוש בנתונים: נמצא שיש לנו 2 משוואות עם 2 נעלמים, נפתור אותן ונקבל את סטיית התקן ואת הממוצע. יש להבין שהממוצע נמצא בדיוק באמצע גרף ההתפלגות הנורמלית. ולכן השטח מתחת לעקומה שנמצא על הציר האופקי, מימין לממוצע שווה ל- 50%.

כיתה יא 802 – שיעור 13 – כתיבה מדעית של מספרים

810 צפיות0 תגובות

מספר) (a בין 0-10, כפול 10 בחזקה מסויימת (n) . המספר נרשם בצורה הבאה: a*〖10〗^n כאשר 1≤a<10 למספרים גדולים - n הוא מספר שלם וחיובי. למשל: 1000 = 〖10〗^3 למספרים קטנים וחיוביים - n הוא מספר שלם ושלילי. למשל: 0.001 = 〖10〗^(-3)

כיתה יא 802 – שיעור 42 – התפלגות נורמלית – קבלה לאוניברסיטה

344 צפיות0 תגובות

נפתור את השאלה עם שימוש ההגדרות הבאות: הממוצע הוא הערך של המשתנה ש- 50% ממספר המשתנים גדולים בערכם ממנו ו- 50% ממספר המשתנים קטנים בערכם ממנו. בהתפלגות נורמלית, החציון, השכיח והממוצע מתלכדים. השטח הכולל מתחת לעקומה מתאים לכלל האוכלוסיה ונחשב כ – 100%. המשתנים מסודרים בצורה סימטרית ביחס לציר, הקובע את מקום הממוצע. סטיית התקן – S – מודדת את מידת פיזור הנתונים משני צידי הממוצע.

כיתה יא 802 – שיעור 36 ב – הסתברות – קובייה

405 צפיות0 תגובות

נפתור שאלה בנושא הסתברות הופעת אותיות על פאות קובייה ונשתמש בנוסחת ההסתברות: (המשתנה של השכיחות)/(השכיחויות כל סכום) = שכיחות יחסית(הסתברות)

עמוד 1 מתוך 3123