קטגוריה: כיתה יא – 3 יחידות שיעורים

* לסידור השיעורים לפי סדר עולה לחץ על כותרת
סידור: כותרת | תאריך | פופולריות | | תגובות | אקראי Sort Ascending
הצג לפי:
עמוד 1 מתוך 3123

כיתה יא 802 – שיעור 01 – הנדסת המרחב – הסבר

1.18K צפיות1 תגובות

נראה כיצד אוסף של נקודות במרחב הופכות למישור ואוסף של מישורים הופך לגוף הנדסי תלת מימדי. נסביר על בסיסי הקובייה ואלכסוניהם, על פיאות הקובייה ואלכסוניהם, על אלכסוני הקובייה, על גובה הקובייה, על זווית הנוצרת בין אלכסון הקובייה והבסיס התחתון.

כיתה יא 802 – שיעור 01 – פתרון גרפי של אי שיוויונות

1.34K צפיות1 תגובות

פתרון סעיף א' של השאלה הוא להשוות בין 2 הפונקציות הנתונות ועל ידי כך למצוא את נקודות החיתוך שלהן. פתרון סעיף ב' של השאלה הוא למצוא עבור אילו ערכי x נמצא הגרף של הפונקציה f(x) מתחת לגרף של הפונקציה g(x)

כיתה יא 802 – שיעור 02 – המשך פתרון גרפי של אי שיוויונות

507 צפיות2 תגובות

פתרון השאלה בסעיף 1 יהיה למצוא את נקודות החיתוך של 2 הפרבולות על ידי השוואת הפונקציות שלהן. פתרון סעיף 2 של השאלה יהיה לחפש עבור אילו ערכי x נמצא הגרף של הפונקציה f(x) מתחת לגרף של הפונקציה g(x) ?

כיתה יא 802 – שיעור 02 – הנדסת המרחב – מנסרות שונות

259 צפיות0 תגובות

נציג ונסביר צורות ותכונות של מנסרות שונות וביניהן: תיבה וקוביה

כיתה יא 802 – שיעור 03 – הנדסת המרחב – מישור חותך מנסרה משולשת

155 צפיות0 תגובות

נדגים בעזרת אנימציה כיצד מישור חותך מנסרה משולשת, בעלת בסיס שצורתו משולש שווה צלעות, כל פעם בצלע, בקודקוד ובפאה שונה ומהו ישר החיתוך.

כיתה יא 802 – שיעור 03 – קריאת גרפים – תספורת

345 צפיות0 תגובות

נלמד לקרוא את הנתונים של הגרף, להבינם ולענות על השאלות.

כיתה יא 802 – שיעור 04 – הנדסת המרחב – הפיכת קוביה לפירמידה

172 צפיות0 תגובות

נתונה קוביה. מישור חותך את הקוביה, דרך מקצוע הבסיס העליון אל המקצוע הנגדי לו, של הבסיס התחתון. מתקבלות 2 מנסרות משולשות. מישור בצורת משולש חותך את אחת המנסרות, מאחד הקודקודים של הבסיס העליון עובר המישור אל המקצוע הנגדי של הבסיס התחתון. מתקבלת פירמידה ריבועית ישרה. נמצא את אורך מקצוע הפירמידה.

כיתה יא 802 – שיעור 04 – חזקות הסבר

510 צפיות1 תגובות

נחזור על החומר שלמדנו בעבר. נלמד כיצד לפתור תרגיל שבו נתונים בסיסים שווים ומעריכים שונים. וכן העלאה בחזקה של מספר שהוא בחזקת מסויימת.

כיתה יא 802 – שיעור 05 – הנדסת המרחב – אלכסון במנסרה משולשת

162 צפיות0 תגובות

נלמד כיצד למצוא אלכסון מנסרה משולשת, על ידי שימוש במשפט פיתגורס במשולשים ישרי זווית.

כיתה יא 802 – שיעור 05 – חזקות עם מעריך טבעי

327 צפיות0 תגובות

נפתור תרגילים בהם נתונים שברים כאשר במונה ובמכנה יש מספרים שהועלו בחזקה .

כיתה יא 802 – שיעור 06 – הנדסת המרחב – אלכסון התיבה

1.12K צפיות0 תגובות

סרטון אנימציה המראה כיצד לחשב את אלכסון התיבה AD על ידי שימוש במשפט פיתגורס במשולש ישר זווית ABC שנמצא בבסיס המלבני התחתון של התיבה; היתר AC משמש כניצב במשולש ACD שבו היתר הינו אלכסון התיבה - AD

כיתה יא 802 – שיעור 06 – חזקות עם מעריך שלילי ואפס

293 צפיות0 תגובות

כלל: כל מספר (שונה מ-0) בחזקת 0 שווה ל - 1 a^0 = 1 כלל: כל מספר (שונה מ-0) בחזקת מעריך שלילי שווה למספר ההפוך/ההופכי של המספר בחזקת אותו מעריך כשהוא חיובי.

כיתה יא 802 – שיעור 07 – הנדסת המרחב – תיבה מלבנית

229 צפיות0 תגובות

נחשב את אורך אלכסון הבסיס, שהוא היתר במשולש ישר זווית כאשר הזווית הישרה היא אחת מזוויות המלבן. לצורך החישוב נשתמש במשפט פיתגורס: סכום ריבועי הניצבים שווה לריבוע היתר. נחשב את גובה התיבה – המקצועות הצדדים של פאות התיבה שווים ביניהם ונקראים גם גבהים של התיבה. נחשב את שטח הפנים = שטחי הבסיסים + שטח המעטפת. שטח המעטפת = היקף הבסיס* גובה התיבה.

כיתה יא 802 – שיעור 07 – תרגיל חזקות עם צמצום

748 צפיות0 תגובות

נפתור תרגיל של שבר כאשר במונה ובמכנה יש ביטויים אלגבריים עם חזקות ועל מנת לפתור את התרגיל נשתמש בכללי החזקות.

כיתה יא 802 – שיעור 08 – הנדסת המרחב – תיבה ריבועית

448 צפיות0 תגובות

לצורך חישוב אלכסון הבסיס העליון של התיבה שבסיסה ריבוע, נשתמש בנוסחאות ובמשפטים הבאים: משפט פיתגורס – סכום ריבועי הניצבים שווה לריבוע היתר. בסיסי התיבה – הבסיס העליון והבסיס התחתון שווים ומקבילים. במשולש ש''ש – הגובה הוא גם תיכון לבסיס וגם חוצה זווית הראש. בריבוע – כל אחת מזוויותיו שווה ל – 90 מעלות. כל צלעותיו שוות ומקבילות זו לזו. אלכסוניו שווים זה לזה.

כיתה יא 802 – שיעור 08 – חזקות עם בסיסים שליליים

288 צפיות0 תגובות

נפתור תרגילים כדוגמאות לכללי החזקות הבאים: אם המעריך זוגי – מתקבל מספר חיובי. אם המעריך אי-זוגי – מתקבל מספר שלילי. אם המעריך אפס – מתקבל מספר אחד.

כיתה יא 802 – שיעור 09 – הנדסת המרחב – מנסרה משולשת

149 צפיות0 תגובות

נפתור את השאלה ונשתמש במשפטים אלה: משפט פיתגורס – סכום ריבועי הניצבים שווה לריבוע היתר. גובה המנסרה – המקצועות הצדדים של פאות המנסרה שווים ביניהם ונקראים גם גבהים של המנסרה. בסיסי המנסרה – הבסיס העליון והבסיס התחתון שווים ומקבילים. נפח – שטח הבסיס* הגובה. במשולש ש''ש – הגובה לבסיס הוא גם תיכון לבסיס וגם חוצה זווית הראש.

כיתה יא 802 – שיעור 09 א' – שורשים הסבר

472 צפיות0 תגובות

נלמד חוקים, כללים והגדרות של פעולת הוצאת שורש ממספר חיובי.

כיתה יא 802 – שיעור 09 ב' – שורש של מכפלה ומנה

300 צפיות0 תגובות

נלמד את הכלל לגבי הוצאת שורש של מכפלת שורשים: אפשר לבצע את פעולת הוצאת השורשn , של מכפלת 2 מספרים חיוביים b*a, על כל ערך בנפרד ולהכפיל אותם. נלמד את הכלל לגבי הוצאת שורש של מנה: כאשר מוציאים שורש של מנה, אפשר לבצע את פעולת הוצאת השורש על כל ערך בנפרד ולחלק אותם.

כיתה יא 802 – שיעור 10 – הנדסת המרחב – אלכסון הבסיס בפירמידה

724 צפיות0 תגובות

נפתור את התרגיל עם שימוש במשפט פיתגורס למשולש ישר זווית שבו היתר הוא אלכסון הבסיס.

כיתה יא 802 – שיעור 10 – השוואת חזקות

917 צפיות0 תגובות

כאשר ב-2 מספרים מופיעות חזקות בעלות מעריכים זהים, יש אפשרות לקבוע מי מהבסיסים יותר קטן, גדול או שווה.

כיתה יא 802 – שיעור 11 – הנדסת המרחב – גובה לבסיס הפירמידה

1.10K צפיות0 תגובות

נראה סרטון אנימציה של חישוב גובה בפירמידה. האנך - הגובה המורד מקודקוד הפירמידה אל בסיסה, מאונך לכל ישר העובר דרך עקבו. במקרה שלנו זוהי נקודת החיתוך של אלכסוני הפירמידה. נחשב את אלכסון הבסיס הריבועי על ידי שימוש במשפט פיתגורס - סכום ריבועי הניצבים שווה לריבוע היתר - וזה יעזור לנו לחשב את הגובה של הפירמידה.

כיתה יא 802 – שיעור 11 – משוואות עם חזקות

630 צפיות1 תגובות

מקרה שבו המעריך זוגי –– פתרון המשוואה הוא: מספר חיובי ומספר שלילי דוגמה למקרה שבו יש למשוואה פתרון אחד חיובי: מקרה שבו המעריך אי-זוגי . דוגמה למקרה שבו יש למשוואה פתרון אחד שלילי: מקרה שבו המעריך אי-זוגי דוגמה למקרה שבו יש למשוואה פתרון אחד שלילי: מקרה שבו המעריך אי-זוגי דוגמה למקרה שבו למשוואה אין פתרון:

כיתה יא 802 – שיעור 12 – הנדסת המרחב – זווית בין מקצוע הפירמידה לבסיסה

241 צפיות0 תגובות

נראה כיצד מחשבים את הזווית בין מקצוע הפירמידה לבסיסה. מקודקוד הפירמידה נוריד גובה - אנך לבסיסה, נעביר את אלכסון הבסיס העובר דרך עקב הגובה ומאונך אליו. הזווית שנוצרת בין אלכסון הבסיס ובין מקצוע הפירמידה, היא הזווית המבוקשת. נתונים לנו: אלכסון הבסיס, הגובה של הפירמידה, ומקצועה. בעזרת נוסחת קוסינוס הזווית המבוקשת, נחשב את הזווית - קוסינוס של זווית שווה לצלע שליד הזווית חלקי היתר.

כיתה יא 802 – שיעור 12 א – משוואות מעריכיות

2.20K צפיות2 תגובות

משוואה מעריכית – משוואה שהנעלם שלה מופיע במעריך החזקה. לפתרון משוואות מעריכיות נשתמש בכלל: כאשר ב-2 אגפי המשוואה מופיעות חזקות בעלות בסיס זהה, יש להשוות את המעריכים.

כיתה יא 802 – שיעור 12 ב – המשך משוואות מעריכיות

276 צפיות0 תגובות

משוואה מעריכית – משוואה שהנעלם שלה מופיע במעריך החזקה. לפתרון משוואות מעריכיות נשתמש בכלל: כאשר ב-2 אגפי המשוואה מופיעות חזקות בעלות בסיס זהה, יש להשוות את המעריכים.

כיתה יא 802 – שיעור 13 – הנדסת המרחב – פירמידה מרובעת וישרה

565 צפיות2 תגובות

לצורך פתרון התרגיל, נשתמש במשפטים הבאים: אנך למישור – ישר המאונך לכל הישרים במישור, העוברים דרך עקבו. עקב – נקודת החיתוך של הישר עם המישור. גובה הפירמידה – אנך לבסיס הפירמידה בנקודת המפגש של אלכסוני הבסיס. משפט פיתגורס – במשולש ישר זווית, סכום ריבועי הניצבים שווה לריבוע היתר. במלבן – • כל הזוויות ישרות. • כל זוג צלעות נגדיות שוות ומקבילות. • אלכסוניו שווים וחוצים זה את זה.

כיתה יא 802 – שיעור 13 – כתיבה מדעית של מספרים

642 צפיות0 תגובות

מספר) (a בין 0-10, כפול 10 בחזקה מסויימת (n) . המספר נרשם בצורה הבאה: a*〖10〗^n כאשר 1≤a<10 למספרים גדולים - n הוא מספר שלם וחיובי. למשל: 1000 = 〖10〗^3 למספרים קטנים וחיוביים - n הוא מספר שלם ושלילי. למשל: 0.001 = 〖10〗^(-3)

עמוד 1 מתוך 3123