שיעורים/מבחנים נוספים
כיתה יב 803 – שיעור 01 ב – נקודות קיצון של פונקציית פולינום
3.67K צפיות1 תגובות2 אוהב
ראשית נפתח את הסוגריים; נגזור את הפונקציה ונשווה את הנגזרת לאפס; נמצא 2 נקודות כ"חשודות" כקיצון; כדי לקבוע את סוג הנקודות הנ''ל: נבנה טבלה בכל תחום נבחר נציג; נציב כל נציג בנגזרת; אם הנגזרת קטנה מאפס, הפונקציה יורדת; אם הנגזרת גדולה מאפס, הפונקציה עולה.
כיתה יב 803 – שיעור 01 ג – המשך נקודות קיצון של פונקציית פולינום
1.21K צפיות0 תגובות5 אוהב
נמצא את נקודת החיתוך של הפונקציה עם ציר x על ידי הצבת Y שווה לאפס בפונקציה; נמצא את נקודת החיתוך של הפונקציה עם ציר Y על ידי הצבת X שווה לאפס בפונקציה; בנקודות הקיצון המשיק מקביל לציר X.
כיתה יב 803 – שיעור 02 א – גרף של פונקציית פולינום
1.03K צפיות0 תגובות2 אוהב
נמצא את שיעורי נקודות חיתוך הפונקציה עם צירX כשנשווה את Y לאפס; נמצא את שיעורי נקודות חיתוך הפונקציה עם ציר Y כשנשווה את X לאפס; נמצא את נקודות הקיצון כשנחשב את הנגזרת של הפונקציה ונשווה אותה לאפס; נמצא את סוג נקודות הקיצון על ידי בניית טבלה.
כיתה יב 803 – שיעור 02 ב – המשך גרף של פונקציית פולינום
785 צפיות0 תגובות2 אוהב
נשרטט את גרף הפונקציה בעזרת התוצאות שקיבלנו בסעיפים הקודמים: שיעורי נקודת המינימום והמקסימום.
כיתה יב 803 – שיעור 03 א – תחומי עלייה וירידה של פונקציית פולינום
1.06K צפיות0 תגובות1 אוהב
נגזור את הפונקציה ; נציב את שיעורי נקודת הקיצון שנתונה בנגזרת הפונקציה שהיא משוואת המשיק, נמצא את תחומי העלייה והירידה בעזרת טבלה;
כיתה יב 803 – שיעור 03 ב – המשך תחומי עלייה וירידה של פונקציית פולינום
557 צפיות0 תגובות0 אוהב
נמצא את נקודת חיתוך הפונקציה עם ציר X כשנשווה את Y לאפס; נמצא את נקודת חיתוך הפונקציה עם ציר Y כשנשווה את X לאפס; נצייר סקיצה של גרף הפונקציה ונמצא את התחומים שבו הפונקציה חיובית ושלילית.
כיתה יב 803 – שיעור 04 א – תחום ההגדרה של פונקציה רציונלית
1.17K צפיות1 תגובות1 אוהב
הגדרת פונקציה רציונלית - מנה של 2 פולינומים. תחום ההגדרה של פונקציה - אוסף ערכי X שעבורם יש לפונקציה משמעות. את שיעורי נקודת הקיצון נמצא בעזרת השוואת הנגזרת לאפס. בעזרת הצבת הערכים הקיצוניים שמצאנו בגזירה הראשונה, בנגזרת השנייה של הפונקציה, נמצא את סוג נקודת הקיצון: אם התקבל ערך חיובי, יש לפונקציה נקודת מינימום, אם התקבל ערך שלילי, יש לפונקציה נקודת מקסימום,
כיתה יב 803 – שיעור 04 ב – המשך תחום ההגדרה של פונקציה רציונלית
472 צפיות0 תגובות1 אוהב
נבדוק אם הגרפים הנתונים מתאימים לתוצאות שקיבלנו. נמצא את תחומי העלייה של הפונקציה: ככל שערכו של X עולה, ערך הפונקציה Y עולה. נמצא את תחומי הירידה של הפונקציה: ככל שערכו של X עולה, ערך הפונקציה Y יורד. נבנה טבלה עם נקודת הקיצון ונקודת אי-הגדרה. בכל תחום של X נציב נציג, את הנציג נציב בנגזרת הפונקציה, כאשר הנגזרת גדולה מאפס, הנגזרת חיובית והפונקציה עולה. כאשר הנגזרת קטנה מאפס, הנגזרת שלילית והפונקציה יורדת.
כיתה יב 803 – שיעור 05 א – חקירת פונקציה רציונלית
1.07K צפיות0 תגובות0 אוהב
נשווה את המכנה לאפס, נמצא את נקודת אי-הגדרה של הפונקציה. נמצא את נקודת החיתוך של הגרף עם ציר Y, נשווה את X לאפס. נמצא את נקודת החיתוך של הגרף עם ציר X, נשווה את Y לאפס.
כיתה יב 803 – שיעור 05 ב – המשך חקירת פונקציה רציונלית
699 צפיות0 תגובות0 אוהב
נגזור את הפונקציה ונמצא את נקודת הקיצון. נבנה טבלה, נציב בה את נקודת אי- ההגדרה, נמצא באיזה תחום הפונקציה יורדת: על ידי הצבת נציגי התחומים של X בנגזרת. נמצא את הגרף המתאים לפונקציה על ידי השוואת התוצאות שקיבלנו, עם הגרפים הנתונים.
כיתה יב 803 – שיעור 06 – אסימפטוטות של פונקציה רציונלית
748 צפיות0 תגובות1 אוהב
נמצא את תחום ההגדרה של הפונקציה : כל הערכים של X פרט לאלה שמאפסים את המכנה. בנקודת אי-הגדרה יש אסימפטוטה אנכית; נגזור את הפונקציה ונשווה אותה לאפס, ונמצא את נקודות הקיצון ואת סוגן. נמצא שאין לפונקציה נקודת חיתוך עם ציר X, על ידי השוואת הפונקציה לאפס.
כיתה יב 803 – שיעור 07 א – גרף של פונקציה רציונלית
441 צפיות0 תגובות0 אוהב
נגזרת הפונקציה שווה לשיפוע המשיק; נגזור את הפונקציה ונציב את שיפוע המשיק הנתון ונמצא את הפרמטר הנדרש; תחום ההגדרה של הפונקציה היא X לא שווה לאפס; נמצא את ערך נקודות הקיצון של הפונקציה על ידי השוואת הנגזרת לאפס. על מנת לקבוע את סוגן מציבים את שיעורי נקודת הקיצון בפונקציית הנגזרת השנייה: כאשר ערך הנגזרת השנייה גדולה מאפס, נקבל נקודת מינימום, כאשר ערך הנגזרת השנייה קטנה מאפס, נקבל נקודת מקסימום,
כיתה יב 803 – שיעור 07 ב – המשך גרף של פונקציה רציונלית
265 צפיות0 תגובות0 אוהב
בהתאם למיקום נקודת המינימום, המקסימום ונקודת אי - ההגדרה, נמצא באיזה תחום הפונקציה עולה או יורדת. נמצא איזה גרף מתאים לפונקציה, בהתאם לתוצאות שיעורי נקודות הקיצון שקיבלנו וסוגן.
כיתה יב 803 – שיעור 08 – משוואת המשיק לפונקציה רציונלית
746 צפיות0 תגובות1 אוהב
נמצא את ערך הפרמטר A : על ידי גזירת הפונקציה והצבת נקודת המינימום בנגזרת. נשווה את הנגזרת של הפונקציה לשיפוע המשיק, ונמצא את נקודת ההשקה; נציב את שיעורי נקודת ההשקה בנוסחת המשוואה הכללית, ונקבל את משוואת המשיק. נמצא את המרחק של הנקודה B מראשית הצירים: על ידי הצבת X=0 במשוואת המשיק.
כיתה יב 803 – שיעור 09 א – חקירת פונקציה עם שורשים
1.62K צפיות2 תגובות0 אוהב
תחום ההגדרה: הביטוי בתוך השורש הריבועי חייב להיות חיובי. נמצא את נקודות החיתוך עם ציר X על ידי הצבת Y=0 נמצא את נקודות החיתוך עם ציר Y על ידי הצבת X=0 לצורך מציאת נקודות החשודות כנקודות קיצון של הפונקציה: נגזור אותה ונשווה אותה לאפס. ובעזרת טבלה נמצא האם הנקודה היא נקודת מקסימום: על ידי הצבת שיעורה בנגזרת הפונקציה, או על ידי הנגזרת השנייה שלה: אם ערך הנגזרת השנייה קטנה מאפס, נקבל נקודת מקסימום.
כיתה יב 803 – שיעור 09 ב – המשך חקירת פונקציה עם שורשים
387 צפיות0 תגובות0 אוהב
נחקור את הגרפים הנתונים על סמך התוצאות שקיבלנו בסעיפים קודמים: נרשום מדוע גרף מסויים מתאים לפונקציה וגרף אחר אינו מתאים לה.
כיתה יב 803 – שיעור 10 – תחום הגדרת פונקציה עם שורשים
512 צפיות0 תגובות0 אוהב
לפי נתוני השאלה, נמצא את שיעורי נקודת הקיצון: על ידי פעולת הגזירה של הפונקציה, והשוואת הנגזרת לאפס. כאשר הנגזרת היא בצורת שבר, והביטוי במכנה של הנגזרת חיובי, ניתן לגזור רק את המונה של הנגזרת. כדי לקבוע את סוג הקיצון: נמצא את הנגזרת השנייה של המונה,, אם נמצא שהיא קטנה מאפס, נקבל נקודת מקסימום. לשרטוט סקיצה של הפונקציה: נבנה טבלה ובה נקודות שנמצאות על הפונקציה.
כיתה יב 803 – שיעור 05 ג – מבחן תשע"ב – חקירת פונקציה רציונלית
1.78K צפיות0 תגובות0 אוהב
נמצא את תחום ההגדרה: כאשר X לא שווה לאפס, כיון שאם X=0 זה מאפס את המכנה. נמצא את חיתוך הפונקציה עם הצירים.
כיתה יב 803 – שיעור 05 ד – מבחן תשע"ב – המשך חקירת פונקציה רציונלית
383 צפיות0 תגובות0 אוהב
מצאנו את נקודות הקיצון של הפונקציה, נבנה טבלה כדי למצוא את סוג נקודות הקיצון. ואת תחומי העלייה והירידה של הפונקציה.
כיתה יב 803 – שיעור 05 ה – מבחן תשע"ב – המשך חקירת פונקציה רציונלית
229 צפיות0 תגובות0 אוהב
נבדוק איזה גרף מתאים לפונקציה המקורית: גרף 1 נפסל - אין לו נקודות חיתוך עם ציר X; גרף 2 נפסל - יש לו נקודות קיצון הפוכות ממה שיש לפונקציה המקורית; גרף 3 נמצא מתאים - הפונקציה עולה ויורדת בתחומים שמצאנו; ונקודות הקיצון מתאימות; גרף 4 נפסל - אין לפונקציה נקודות חיתוך עם ציר Y.
כיתה יב 803 – שיעור 17 ג – מבחן תשע"ב – אינטגרל של פונקציה
954 צפיות0 תגובות1 אוהב
נגזור את הפונקציה הנתונה. שיפוע המשיק = נגזרת הפונקציה. בעזרת שיפוע המשיק ונקודת ההשקה, נמצא את הפרמטר. למציאת נקודות קיצון של הפונקציה, נשווה את נגזרת הפונקציה לאפס. את סוג נקודת הקיצון, נמצא על ידי הנגזרת השנייה: אם הנגזרת השנייה חיובית, אזי יש נקודת מינימום. לצורך מציאת הפונקציה, נפעיל את פעולת האינטגרל, על פונקציית הנגזרת, ונציב בה את שיעורי נקודת ההשקה.
כיתה יב 805 – שיעור 01 – בני – מבוא לנגזרות
1.34K צפיות0 תגובות0 אוהב
מבוא לנגזרות - נלמד מה זו נגזרת של פונקציה ואיך מחשבים נגזרת
כיתה יב 805 – שיעור 02 – בני – נוסחאות של נגזרות
1.21K צפיות4 תגובות0 אוהב
מבוא לנגזרות - נחזור על כמה נוסחאות של נגזרות
כיתה יב 805 – שיעור 03א – בני – נגזרות של לוגריתמים וחזקות
1.12K צפיות2 תגובות1 אוהב
נכיר את הקבוע e, ונלמד על נגזרות של פונקציות מעריכיות ולוגריתמיות בבסיס e.
כיתה יב 805 – שיעור 03ב – בני – נגזרות של לוגריתמים וחזקות
497 צפיות0 תגובות1 אוהב
המשך לימוד נגזרות של פונקציות מעריכיות ולוגריתמיות בבסיס e.
כיתה יב 805 – שיעור 03ג – בני – נגזרות של לוגריתמים וחזקות
568 צפיות0 תגובות0 אוהב
חלק ג - נשלים את התמונה לנגזרות של פונקציות מעריכיות ולוגריתמיות בבסיס כלשהו.
כיתה יב 805 – שיעור 04 – בני – תרגיל מינימום פונקציה מעריכית
412 צפיות0 תגובות0 אוהב
נפתור תרגיל בגרות הקשור למציאת מינימום של מנה של פונקציות מעריכיות
כיתה יב 805 – שיעור 05א – בני – תרגיל חקירת פונקציה
528 צפיות0 תגובות0 אוהב
נפתור תרגיל בגרות של חקירת פונקציה לוגריתמית. חלק א' - נמצא תחום הגדרה, ונחליף את בסיס הלוג של הפונקציה
כיתה יב 805 – שיעור 05ב – בני – תרגיל חקירת פונקציה
679 צפיות0 תגובות0 אוהב
נפתור תרגיל בגרות של חקירת פונקציה לוגריתמית. חלק ב' - נפתור נגזרת של פונקציה לוגריתמית
כיתה יב 805 – שיעור 05ג – בני – תרגיל חקירת פונקציה
313 צפיות0 תגובות0 אוהב
נפתור תרגיל בגרות של חקירת פונקציה לוגריתמית. חלק ג' - נפתור את ערך הפונקציה בערכי X מסויימים
כיתה יב 805 – שיעור 6א – בני – מבוא לאינטגרלים
588 צפיות0 תגובות1 אוהב
מבוא לאינטגרלים, חלק א', הגדרת אינטגרל מסויים ופונקציה קדומה
כיתה יב 805 – שיעור 6ב – בני – מבוא לאינטגרלים
313 צפיות0 תגובות0 אוהב
מבוא לאינטגרלים, חלק ב', נראה את הקשרים השונים בין פונקציה קדומה לבין האינטגרל המסויים
כיתה יב 805 – שיעור 6ג – בני – מבוא לאינטגרלים
268 צפיות0 תגובות0 אוהב
מבוא לאינטגרלים, חלק ג', נגדיר אינטגרל לא מסויים, ונחזור בקצרה על כל הגדרות האינטגרלים.
כיתה יב 805 – שיעור 07 א – בני – נוסחאות של אינטגרלים
425 צפיות0 תגובות0 אוהב
נוסחאות של אינטגרלים - חלק א' - אינטגרל של סכום פונקציות, פונקציה כפול מספר, ואינטגרל של פולינום
כיתה יב 805 – שיעור 07 ב – בני – נוסחאות של אינטגרלים
358 צפיות0 תגובות1 אוהב
נוסחאות של אינטגרלים - חלק ב' - אינטגרל של פונקציה של פונקציה ליניארית
כיתה יב 805 – שיעור 07 ג – בני – נוסחאות של אינטגרלים
292 צפיות0 תגובות0 אוהב
נוסחאות של אינטגרלים - חלק ג' - אינטגרל של שטח כלוא בין פונקציות
כיתה יב 805 – שיעור 8 – בני – אינטגרלים של פונקציות מעריכיות
982 צפיות0 תגובות0 אוהב
נוסחאות לאינטגרלים של פונקציות מעריכיות
כיתה יב 805 – שיעור 9 – בני – האינטגרל הוא לוג
272 צפיות0 תגובות0 אוהב
נוסחאות לאינטגרלים שהתוצאה שלהם היא פונקצית לוג
כיתה יב 805 – שיעור 10א – בני – תרגיל בגרות חורף 2012 – חקירת פונקציה
314 צפיות0 תגובות0 אוהב
פתרון שאלת בגרות חורף 2012. חלק א' - שרטוט סקיצה של הפונקציה וחישוב פרמטר בפונקציה
כיתה יא 804 – בני – שיעור 03א – אסימפטוטות 1
1.15K צפיות2 תגובות0 אוהב
הסבר על אסימפטוטות. חלק א' - אסימפטוטה אנכית
כיתה יא 804 – בני – שיעור 03ב – אסימפטוטות 2
597 צפיות0 תגובות1 אוהב
הסבר על אסימפטוטות. חלק ב' - אסימפטוטה אופקית
כיתה יא 804 – בני – שיעור 04א – קיץ תשעב – תחום הגדרה, אסימפטוטות, חיתוך הפונקציה עם הצירים, עליה וירידה
767 צפיות0 תגובות0 אוהב
פתרון שאלה 7 מבגרות קיץ תשע"ב - חלק א'. אנליזת פונקציה שהיא מנה של פולינומים.
כיתה יא 804 – בני – שיעור 04ב – קיץ תשעב – גרף הפונקציה
445 צפיות0 תגובות2 אוהב
פתרון שאלה 7 מבגרות קיץ תשע"ב - חלק ב'. אנליזת פונקציה שהיא מנה של פולינומים.
כיתה יא 804 – בני – שיעור 06א – מבוא לאינטגרל מסויים ופונקציה קדומה
615 צפיות0 תגובות2 אוהב
מבוא לאינטגרלים, חלק א', הגדרת אינטגרל מסויים ופונקציה קדומה
כיתה יא 804 – בני – שיעור 06ב – מבוא לאינטגרלים
475 צפיות0 תגובות0 אוהב
מבוא לאינטגרלים, חלק ב', נראה את הקשרים השונים בין פונקציה קדומה לבין האינטגרל המסויים
כיתה יא 804 – בני – שיעור 06ג – מבוא לאינטגרל לא מסויים
433 צפיות2 תגובות0 אוהב
מבוא לאינטגרלים, חלק ג', נגדיר אינטגרל לא מסויים, ונחזור בקצרה על כל הגדרות האינטגרלים.
כיתה יא 804 – בני – שיעור 07א – נוסחאות של אינטגרלים
2.01K צפיות0 תגובות0 אוהב
נוסחאות של אינטגרלים - חלק א' - אינטגרל של סכום פונקציות, פונקציה כפול מספר, ואינטגרל של פולינום
כיתה יא 804 – בני – שיעור 07ב – אינטגרל של פונקציה ליניארית
409 צפיות0 תגובות0 אוהב
נוסחאות של אינטגרלים - חלק ב' - אינטגרל של פונקציה של פונקציה ליניארית